【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)求的最大值和最小值.

【答案】(1)見(jiàn)解析;(2)最大值為6,最小值為.

【解析】

(1)求出原函數(shù)的導(dǎo)函數(shù),分別利用導(dǎo)函數(shù)大于0和小于0,結(jié)合已知函數(shù)定義域求得原函數(shù)的單調(diào)區(qū)間;

(2)求出函數(shù)在[﹣2,1]兩端點(diǎn)的值,再求出函數(shù)在該區(qū)間上的最大值得答案.

(1) f′(x)=3x2+4x+1=3(x+)(x+1).由f′(x)>0,得x<-1或x>-

由f′(x)<0,得-1<x<-.因此,函數(shù)f(x)在[-,1]上的單調(diào)遞增區(qū)間為[-,-1],[-,1],單調(diào)遞減區(qū)間為[-1,-].

(2)f(x)在x=-1處取得極大值為f(-1)=2;

f(x)在x=-處取得極小值為f(-)=.

又∵f(-)=,f(1)=6,且>,

∴f(x)在[-,1]上的最大值為f(1)=6,最小值為f.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1,當(dāng)f(x)+f(x-8)≤2時(shí),x的取值范圍是(  )

A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推出正四面體的下列性質(zhì),你認(rèn)為比較恰當(dāng)?shù)氖牵ā 。?/span>

①各棱長(zhǎng)相等,同一頂點(diǎn)上的任兩條棱的夾角都相等;

②各個(gè)面都是全等的正三角形,相鄰兩個(gè)面所成的二面角都相等;

③各面都是面積相等的三角形,同一頂點(diǎn)上的任兩條棱的夾角都相等.

A. B. C. ①②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量a(3sinα,cosα),b(2sinα,5sinα4cosα)α,且ab.

(1)tanα的值;

(2)cos的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓上一動(dòng)點(diǎn),過(guò)點(diǎn)軸,垂足為點(diǎn),中點(diǎn)為

1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;

Ⅱ)過(guò)點(diǎn)的直線交于兩點(diǎn),當(dāng)時(shí),求線段的垂直平分線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了估計(jì)某校某次數(shù)學(xué)考試的情況,現(xiàn)從該校參加考試的600名學(xué)生中隨機(jī)抽出60名學(xué)生,其數(shù)學(xué)成績(jī)(百分制)均在內(nèi),將這些成績(jī)分成六組,得到如圖所示的部分頻率分布直方圖.

(1)求抽出的60名學(xué)生中數(shù)學(xué)成績(jī)?cè)?/span>內(nèi)的人數(shù);

(2)若規(guī)定成績(jī)不小于85分為優(yōu)秀,則根據(jù)頻率分布直方圖,估計(jì)該校參加考試的學(xué)生數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù);

(3)試估計(jì)抽出的60名學(xué)生的數(shù)學(xué)成績(jī)的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若不等式m22km≥0對(duì)所有k[11]恒成立,則實(shí)數(shù)m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】填空:

1)如果,且,則是第________象限角;

2)如果,且,則是第________象限角;

3)如果,且,則是第________象限角;

4)如果,且,則是第________象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案