【題目】黨的十九大明確把精準脫貧作為決勝全面建成小康社會必須打好的三大攻堅戰(zhàn)之一. 堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村中60戶農(nóng)民種植蘋果、40戶農(nóng)民種植梨、20戶農(nóng)民種植草莓(每戶僅扶持種植一種水果),為了更好地了解三種水果的種植與銷售情況,現(xiàn)從該村隨機選6戶農(nóng)民作為重點考察對象;

(1)用分層抽樣的方法,應選取種植蘋果多少戶?

(2)在上述抽取的6戶考察對象中隨機選2戶,求這2戶種植水果恰好相同的概率.

【答案】(1)3(2)

【解析】

1)利用分層抽樣,求出抽樣的比例,即可求出結(jié)果;

2)由(1)可設蘋果戶為A,B,C;梨戶為a,b;草莓戶為1,然后再從6戶任選2戶,列出基本事件總數(shù),找到滿足要求的基本事件數(shù),根據(jù)古典概型即可求出結(jié)果.

1,

所以應選取種植蘋果.

2)記蘋果戶為AB,C;梨戶為ab;草莓戶為1;則從6戶任選2戶,基本事件總數(shù)為:ABAC,Aa,Ab,A1,BC,Ba,Bb,B1,CaCb,C1ab,a1b115種;

“6戶中選2戶,這兩戶種植水果恰好相同為事件M,則事件M包含的基本事件數(shù)為:AB,AC,BC,ab4種;

所以,概率為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,五面體中,四邊形是菱形, 是邊長為2的正三角形,

(1)證明: ;

(2)若在平面內(nèi)的正投影為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,四邊形為菱形,,,平面平面.

(1)求證:;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀下面一道題目的證明,指出其中的一處錯誤。題目:平面上有六個點,任何三點都是三邊互不相等三角形的頂點,則這些三角形中有一個的最短邊又是另一個三角形的最長邊。證明:第一步,對已知的六個點作兩兩連線,可以得出15條邊,記為,…,.第二步,由于任何三點組成的都是“三邊互不相等的三角形”,因此,15條邊互不相等不妨設.第三步,由于“任何三點都是三邊互不相等三角形的頂點”,因此,任取三條邊都可以組成三角形,則、、組成的三角形的最長邊,也是、組成的三角形的最短邊,命題得證.這三步中,第______步有錯誤,理由是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新高考方案的實施,學生對物理學科的選擇成了焦點話題. 某學校為了了解該校學生的物理成績,從,兩個班分別隨機調(diào)查了40名學生,根據(jù)學生的某次物理成績,得到班學生物理成績的頻率分布直方圖和班學生物理成績的頻數(shù)分布條形圖.

(Ⅰ)估計班學生物理成績的眾數(shù)、中位數(shù)(精確到)、平均數(shù)(各組區(qū)間內(nèi)的數(shù)據(jù)以該組區(qū)間的中點值為代表);

(Ⅱ)填寫列聯(lián)表,并判斷是否有的把握認為物理成績與班級有關?

物理成績的學生數(shù)

物理成績的學生數(shù)

合計

合計

附:列聯(lián)表隨機變量;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,傾斜角為的直線經(jīng)過拋物線的焦點,且與拋物線交于兩點.

1)求拋物線的焦點的坐標及準線的方程;

2)若為銳角,作線段的垂直平分線軸于點.證明為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點的雙曲線的右焦點為,右頂點為.

(1)求雙曲線的方程;

(2)若直線與雙曲線恒有兩個不同的交點,且(其中為坐標原點),求實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列五個命題:

為真命題,則為真命題;

命題“,有”的否定為“,有”;

“平面向量的夾角為鈍角”的充分不必要條件是“”;

在銳角三角形中,必有;

為等差數(shù)列,若,則

其中正確命題的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知梯形中,,,四邊形為矩形,,平面平面.

(Ⅰ)求證:平面;

(Ⅱ)求平面與平面所成二面角的正弦值;

(Ⅲ)若點在線段上,且直線與平面所成角的正弦值為,求線段的長.

查看答案和解析>>

同步練習冊答案