已知橢圓上的點(diǎn)到左右兩焦點(diǎn)的距離之和為,離心率為.
(1)求橢圓的方程;
(2)過(guò)右焦點(diǎn)的直線交橢圓于兩點(diǎn),若軸上一點(diǎn)滿足,求直線的斜率的值.
(1);(2)

試題分析:(1)根據(jù)與離心率可求得a,b,c的值,從而就得到橢圓的方程;(2)設(shè)出直線的方程,并與橢圓方程聯(lián)立消去y可得到關(guān)于x的一元二次方程,然后利用中點(diǎn)坐標(biāo)公式與分類討論的思想進(jìn)行解決.
試題解析:(1),∴,
,∴,∴,
橢圓的標(biāo)準(zhǔn)方程為
(2)已知,設(shè)直線的方程為,-,
聯(lián)立直線與橢圓的方程,化簡(jiǎn)得:,
,
的中點(diǎn)坐標(biāo)為
①當(dāng)時(shí),的中垂線方程為,
,∴點(diǎn)的中垂線上,將點(diǎn)的坐標(biāo)代入直線方程得:
,即,
解得 .
②當(dāng)時(shí),的中垂線方程為,滿足題意,
∴斜率的取值為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓 的離心率為 ,點(diǎn) 為其下焦點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn),過(guò) 的直線 (其中)與橢圓 相交于兩點(diǎn),且滿足:.

(1)試用  表示
(2)求  的最大值;
(3)若 ,求  的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)點(diǎn)分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為.
(I)求橢圓的方程;
(II)設(shè)直線(直線不重合),若、均與橢圓相切,試探究在軸上是否存在定點(diǎn),使點(diǎn)、的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn),動(dòng)點(diǎn)軸上的正射影為點(diǎn),且滿足直線.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知線段MN的兩個(gè)端點(diǎn)M、N分別在軸、軸上滑動(dòng),且,點(diǎn)P在線段MN上,滿足,記點(diǎn)P的軌跡為曲線W.
(1)求曲線W的方程,并討論W的形狀與的值的關(guān)系;
(2)當(dāng)時(shí),設(shè)A、B是曲線W與軸、軸的正半軸的交點(diǎn),過(guò)原點(diǎn)的直線與曲線W交于C、D兩點(diǎn),其中C在第一象限,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線,直線與E交于A、B兩點(diǎn),且,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓C上的點(diǎn)(2,1)到兩焦點(diǎn)的距離之和為4.
(1)求橢圓C的方程;
(2)過(guò)橢圓C的右焦點(diǎn)F作直線l與橢圓C分別交于A,B兩點(diǎn),其中點(diǎn)Ax軸下方,且=3.求過(guò)O,AB三點(diǎn)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線的焦點(diǎn)到準(zhǔn)線的距離是                  .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)拋物線的焦點(diǎn)的直線交拋物線于兩點(diǎn),且在直線上的射影分別是,則的大小為               .

查看答案和解析>>

同步練習(xí)冊(cè)答案