【題目】已知數(shù)列各項均為正數(shù), , ,且對任意恒成立,記的前項和為.
(1)若,求的值;
(2)證明:對任意正實數(shù), 成等比數(shù)列;
(3)是否存在正實數(shù),使得數(shù)列為等比數(shù)列.若存在,求出此時和的表達式;若不存在,說明理由.
【答案】(1)(2)見解析(3)存在使數(shù)列為等比數(shù)列,此時, .
【解析】試題分析:(1)根據(jù), ,且對任意恒成立,代值計算即可.
(2)a1=1,a2=2,且anan+3=an+1an+2對任意n∈N*恒成立,則可得,從而的奇數(shù)項和偶數(shù)項均構(gòu)成等比數(shù)列,即可證明,
(3)在(2)中令,則數(shù)列是首項為3,公比為的等比數(shù)列,從而得到, .又?jǐn)?shù)列為等比數(shù)列,解得,∴, ,∴求出此時和的表達式.
試題解析:
解:(1)∵,∴,又∵,∴;
(2)由,兩式相乘得,
∵,∴,
從而的奇數(shù)項和偶數(shù)項均構(gòu)成等比數(shù)列,
設(shè)公比分別為,則, ,
又∵,∴,即,
設(shè),則,且恒成立,
數(shù)列是首項為,公比為的等比數(shù)列,問題得證;
(3)在(2)中令,則數(shù)列是首項為3,公比為的等比數(shù)列,
∴
,
且, , , ,
∵數(shù)列為等比數(shù)列,∴
即即
解得(舍去),
∴, ,
從而對任意有,
此時, 為常數(shù),滿足成等比數(shù)列,
當(dāng)時, ,又,∴,
綜上,存在使數(shù)列為等比數(shù)列,此時, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(2)當(dāng)時,分別求函數(shù)的最小值和的最大值,并證明當(dāng)時, 成立;
(3)令,當(dāng)時,判斷函數(shù)有幾個不同的零點并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)當(dāng),不等式恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極大值,求正實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程選講.
在平面直角坐標(biāo)系中,以為極點,軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為.
(1)寫出直線與曲線的直角坐標(biāo)方程;
(2)過點M平行于直線的直線與曲線交于兩點,若,求點M軌跡的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐P-ABC中,平面PAC平面ABC, ABC=,點D、E在線段AC上,且AD=DE=EC=2,PD=PC=4,點F在線段AB上,且EF//BC.
(Ⅰ)證明:AB平面PFE.
(Ⅱ)若四棱錐P-DFBC的體積為7,求線段BC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊半圓形空地,開發(fā)商計劃建一個矩形游泳池及其矩形附屬設(shè)施,并將剩余空地進行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為,半徑為,矩形的一邊在直徑上,點在圓周上, 在邊上,且,設(shè).
(1)記游泳池及其附屬設(shè)施的占地面積為,求的表達式;
(2)當(dāng)為何值時,能符合園林局的要求?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com