已知直線y=k(x-2)(k∈R)與雙曲線數(shù)學(xué)公式,某學(xué)生作了如下變形;由數(shù)學(xué)公式消去y后得到形如關(guān)于x的方程ax2+bx+c=0.討論:當(dāng)a=0時(shí),該方程恒有一解;當(dāng)a≠0時(shí),b2>4ac恒成立,假設(shè)該學(xué)生的演算過(guò)程是正確的,則根據(jù)該學(xué)生的演算過(guò)程所提供的信息,求出實(shí)數(shù)m的取值范圍應(yīng)為


  1. A.
    (0,4]
  2. B.
    [4,+∞)
  3. C.
    (0,2]
  4. D.
    [2,+∞)
A
分析:先根據(jù)直線方程可知直線恒過(guò)定點(diǎn),根據(jù)題設(shè)條件可知直線與雙曲線恒有交點(diǎn),進(jìn)而可判斷出雙曲線的右頂點(diǎn)在定點(diǎn)上或左側(cè)進(jìn)而求得m的范圍.
解答:直線y=k(x-2)(k∈R)恒過(guò)定點(diǎn)(2,0),
根據(jù)題設(shè)條件知直線與雙曲線恒有交點(diǎn),
故需要定點(diǎn)(2,0)在雙曲線的右頂點(diǎn)或右頂點(diǎn)的右邊,
≤2,求得m≤4,
要使方程為雙曲線需m>0
∴m的范圍是0<m≤4.
故選A.
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).考查了學(xué)生數(shù)形結(jié)合的思想和轉(zhuǎn)化和化歸的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=k(x+2)(k>0)與拋物線C:y2=8x相交于A、B兩點(diǎn),F(xiàn)為C的焦點(diǎn),若|FA|=2|FB|,則k=( 。
A、
1
3
B、
2
3
C、
2
3
D、
2
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=k(x-3)與雙曲線
x2
m
-
y2
27
=1
,有如下信息:聯(lián)立方程組
y=k(x-3)
x2
m
-
y2
27
=1
消去y后得到方程Ax2+Bx+C=0,分類討論:
(1)當(dāng)A=0時(shí),該方程恒有一解;
(2)當(dāng)A≠0時(shí),△=B2-4AC≥0恒成立.在滿足所提供信息的前提下,雙曲線離心率的取值范圍是( 。
A、[9,+∞)
B、(1,9]
C、(1,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=k(x-3)與雙曲線
x2
m
-
y2
27
=1
恒有公共點(diǎn),則雙曲線離心率的取值范圍(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=k(x-2)(k∈R)與雙曲線
x2
m
-
y2
8
=1
,某學(xué)生作了如下變形;由
y=k(x-2)
x2
m
-
y2
8
=1
消去y后得到形如關(guān)于x的方程ax2+bx+c=0.討論:當(dāng)a=0時(shí),該方程恒有一解;當(dāng)a≠0時(shí),b2>4ac恒成立,假設(shè)該學(xué)生的演算過(guò)程是正確的,則根據(jù)該學(xué)生的演算過(guò)程所提供的信息,求出實(shí)數(shù)m的取值范圍應(yīng)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•吉林二模)已知直線y=k(x+1)(k>0)與拋物線C:y2=4x相交于A、B兩點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),若|FA|=2|FB|,則k=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案