【題目】已知函數(shù)f (x)=(a≠0).
(1)當(dāng)a=-1,b=0時(shí),求函數(shù)f (x)的極值;
(2)當(dāng)b=1時(shí),若函數(shù)f (x)沒有零點(diǎn),求實(shí)數(shù)a的取值范圍.
【答案】(1)極小值為,無極大值; (2) .
【解析】
(1)當(dāng)時(shí),求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性,結(jié)合函數(shù)極值的定義,即可求解;
(2)把函數(shù)沒有零點(diǎn),轉(zhuǎn)化為方程ax-a+ex=0無實(shí)根,令,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,列出不等式,即可求解.
(1)當(dāng)時(shí),函數(shù),則,
當(dāng)時(shí),單調(diào)遞減;
當(dāng)時(shí),單調(diào)遞增.
所以的極小值為,無極大值.
(2)當(dāng)時(shí),函數(shù),
因?yàn)楹瘮?shù)沒有零點(diǎn),即方程無實(shí)根,即ax-a+ex=0無實(shí)根,
令,則,
若時(shí),則在R上單調(diào)遞增, 此時(shí)存在,使得,不合題意;
若時(shí),令,即,得;
令,得,
所以當(dāng),函數(shù)取得最小值,最小值為,
要使得函數(shù)沒有零點(diǎn),則滿足,即,
解得,
綜上所述,實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的焦距為,且橢圓過點(diǎn),直線與圓: 相切,且與橢圓相交于兩點(diǎn).
(1)求橢圓的方程;
(2)求三角形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)為提高服務(wù)質(zhì)量,隨機(jī)調(diào)查了50名男顧客和50名女顧客,每位顧客對(duì)該商場(chǎng)的服務(wù)給出滿意或不滿意的評(píng)價(jià),得到下面列聯(lián)表:
滿意 | 不滿意 | |
男顧客 | 40 | 10 |
女顧客 | 30 | 20 |
(1)分別估計(jì)男、女顧客對(duì)該商場(chǎng)服務(wù)滿意的概率;
(2)能否有的把握認(rèn)為男、女顧客對(duì)該商場(chǎng)服務(wù)的評(píng)價(jià)有差異?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市工業(yè)部門計(jì)劃對(duì)所轄中小型企業(yè)推行節(jié)能降耗技術(shù)改造,下面是對(duì)所轄企業(yè)是否支持技術(shù)改造進(jìn)行的問卷調(diào)查的結(jié)果:
支持 | 不支持 | 合計(jì) | |
中型企業(yè) | 40 | ||
小型企業(yè) | 240 | ||
合計(jì) | 560 |
已知從這560家企業(yè)中隨機(jī)抽取1家,抽到支持技術(shù)改造的企業(yè)的概率為.
(1)能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“是否支持節(jié)能降耗技術(shù)改造”與“企業(yè)規(guī)模”有關(guān)?
(2)從支持節(jié)能降耗的中小企業(yè)中按分層抽樣的方法抽出8家企業(yè),然后從這8家企業(yè)選出2家進(jìn)行獎(jiǎng)勵(lì),分別獎(jiǎng)勵(lì)中型企業(yè)20萬元,小型企業(yè)10萬元.求獎(jiǎng)勵(lì)總金額為20萬元的概率.
附:
0.05 | 0.025 | 0.01 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級(jí)有400名學(xué)生參加某項(xiàng)體育測(cè)試,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:,整理得到如下頻率分布直方圖:
(1)若該樣本中男生有55人,試估計(jì)該學(xué)校高三年級(jí)女生總?cè)藬?shù);
(2)若規(guī)定小于60分為“不及格”,從該學(xué)校高三年級(jí)學(xué)生中隨機(jī)抽取一人,估計(jì)該學(xué)生不及格的概率;
(3)若規(guī)定分?jǐn)?shù)在為“良好”,為“優(yōu)秀”.用頻率估計(jì)概率,從該校高三年級(jí)隨機(jī)抽取三人,記該項(xiàng)測(cè)試分?jǐn)?shù)為“良好”或“優(yōu)秀”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD⊥平面CDE,H是BE的中點(diǎn),G是AE,DF的交點(diǎn).
(1)求證:GH∥平面CDE;
(2)求證:面ADEF⊥面ABCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足.
(1)求函數(shù)f(x)和g(x)的表達(dá)式;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍;
(3)若方程在上恰有一個(gè)實(shí)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交通部門調(diào)查在高速公路上的平均車速情況,隨機(jī)抽查了60名家庭轎車駕駛員,統(tǒng)計(jì)其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.
(1)完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為,家庭轎車平均車速超過與駕駛員的性別有關(guān);
平均車速超過的人數(shù) | 平均車速不超過的人數(shù) | 合計(jì) | |
男性駕駛員 | |||
女性駕駛員 | |||
合計(jì) |
(2)根據(jù)這些樣本數(shù)據(jù)來估計(jì)總體,隨機(jī)調(diào)查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數(shù)為,假定抽取的結(jié)果相互獨(dú)立,求的分布列和數(shù)學(xué)期望.
參考公式:
臨界值表:
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com