【題目】已知橢圓 的左頂點(diǎn)為,右焦點(diǎn)為,過點(diǎn)且斜率為1的直線交橢圓于另一點(diǎn),交軸于點(diǎn),

(1)求橢圓的方程;

(2)過點(diǎn)作直線與橢圓交于兩點(diǎn),連接為坐標(biāo)原點(diǎn))并延長(zhǎng)交橢圓于點(diǎn),求面積的最大值及取最大值時(shí)直線的方程.

【答案】(Ⅰ);(Ⅱ) 面積的最大值為3,此時(shí)直線的方程為

【解析】試題分析:(1)根據(jù)題意列出關(guān)于 、的方程組,結(jié)合性質(zhì) , ,求出 、 、,即可得結(jié)果;(2)設(shè)直線方程,代入橢圓方程,由韋達(dá)定理,弦長(zhǎng)公式及基本不等式的性質(zhì)即可求得面積為,根據(jù)基本不等式可求最大值及直線的方程.

試題解析:(1)由題知,故,代入橢圓的方程得,又,故,橢圓.

(2)由題知,直線不與軸重合,故可設(shè),由,

設(shè),則,由關(guān)于原點(diǎn)對(duì)稱知,

, ,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,

面積的最大值為3,此時(shí)直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列 ,﹣ , ,﹣ ,…的一個(gè)通項(xiàng)公式為(
A.an=(﹣1)n
B.an=(﹣1)n
C.an=(﹣1)n+1
D.an=(﹣1)n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+6.
(1)當(dāng)a=5時(shí),解不等式f(x)<0;
(2)若不等式f(x)>0的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定橢圓C: (a>b>0).稱圓心在原點(diǎn)O,半徑為 的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F( ,0),其短軸上的一個(gè)端點(diǎn)到點(diǎn)F的距離為
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線l1 , l2 , 使得l1 , l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l(xiāng)1 , l2是否垂直,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角所對(duì)的邊分別為,已知.

(1)求證:成等差數(shù)列;

(2)若,的面積為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)討論函數(shù)的單調(diào)性,并證明當(dāng)時(shí), ;

(Ⅱ)證明:當(dāng)時(shí),函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x≤﹣1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=﹣1,求A∩B和A∪B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)

已知如下等式: , ,

當(dāng)時(shí),試猜想的值,并用數(shù)學(xué)歸納法給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位職工義務(wù)獻(xiàn)血,在體檢合格的人中, 型血的共有28人, 型血的共有7人, 型血的共有9人, 型血的有3人.

(1)從中任選1人去獻(xiàn)血,有多少種不同的選法?

(2)從四種血型的人中各選1人去獻(xiàn)血,有多少種不同的選法?

查看答案和解析>>

同步練習(xí)冊(cè)答案