【題目】國際上鉆石的重量計算單位為克拉.已知某種鉆石的價值y(美元)與其重量x(克拉)的平方成正比,且一顆為3克拉的該種鉆石的價值為54000美元.已知,價值損失百分率切割中重量的損耗不計.

1)寫出y關(guān)于x的函數(shù)關(guān)系式;

2)若把一顆鉆石切割成重量比為的兩顆鉆石,求價值損失的百分率;

3)若把一顆鉆石切割成重量分別為m克拉和n克拉的兩顆鉆石,問:當(dāng)m、n滿足何種關(guān)系時,價值損失的百分率最大?

【答案】123)當(dāng)時,價值損失的百分率達(dá)到最大

【解析】

1)先由題意可設(shè)價值與重量的關(guān)系式為:,再根據(jù)3克拉的價值是54000美元求得值,即可求得此鉆石的價值與重量的函數(shù)關(guān)系式;

2)根據(jù)價值損失百分率的公式,設(shè)兩顆鉆石的重量為克拉,代入進(jìn)行求解即可.

3)兩顆鉆石的重量為、克拉,原有價值是,現(xiàn)有價值是;價值損失的百分率為:,化簡整理,得其最大值,即鉆石價值損失的最大百分率.

1)依題意設(shè),又當(dāng)時,

,

2)設(shè)兩顆鉆石的重量為、克拉

則原有價值是,現(xiàn)有價值是,

價值損失的百分率,

即價值損失的百分率是

3)若兩顆鉆石的重量為克拉,則原有價值是

現(xiàn)有價值是;價值損失的百分率為:

,

當(dāng)且僅當(dāng)時取等號;

所以,當(dāng)時,鉆石價值損失的百分率最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,有,橢圓的離心率為;

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知,過點(diǎn)作斜率為kk>0)的直線與橢圓交于,不同兩點(diǎn),線段的中垂線為,記的縱截距為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市交通管理有關(guān)部門對年參加駕照考試的歲以下的學(xué)員隨機(jī)抽取名學(xué)員,對他們的科目三(道路駕駛)和科目四(安全文明相關(guān)知識)進(jìn)行兩輪測試,并把兩輪成績的平均分作為該學(xué)員的抽測成績,記錄數(shù)據(jù)如下:

學(xué)員編號

科目三成績

科目四成績

1)從年參加駕照考試的歲以下學(xué)員中隨機(jī)抽取一名學(xué)員,估計這名學(xué)員抽測成績大于或等于分的概率;

2)根據(jù)規(guī)定,科目三和科目四測試成績均達(dá)到分以上(含分)才算合格,從抽測的號學(xué)員中任意抽取兩名學(xué)員,記為抽取學(xué)員不合格的人數(shù),求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20141月至201612月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論錯誤的是(

A.月接待游客量逐月增加

B.年接待游客量逐年增加

C.各年的月接待游客量高峰期大致在7,8

D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從AB兩地區(qū)分別隨機(jī)調(diào)查了40個用戶,根據(jù)用戶對產(chǎn)品的滿意度評分,得到A地區(qū)用戶滿意度評分的頻率分布直方圖(如圖)和B地區(qū)用戶滿意度評分的頻數(shù)分布表.

B地區(qū)用戶滿意度評分的頻數(shù)分布表

滿意度評分分組

頻數(shù)

2

8

14

10

6

在圖中作出B地區(qū)用戶滿意度評分的頻率分布直方圖,并通過直方圖比較兩地區(qū)滿意度評分的平均值及分散程度(不要求計算出具體值,給出結(jié)論即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCDA1B1C1D1中,ABBC4,BB12,點(diǎn)E、F、M分別為C1D1,A1D1,B1C1的中點(diǎn),過點(diǎn)M的平面α與平面DEF平行,且與長方體的面相交,交線圍成一個幾何圖形.

1)在圖1中,畫出這個幾何圖形,并求這個幾何圖形的面積(不必說明畫法與理由)

2)在圖2中,求證:D1B⊥平面DEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組為了研究晝夜溫差對一種稻谷種子發(fā)芽情況的影響,他們分別記錄了4月1日至4月5日的每天星夜溫差與實(shí)驗室每天每100顆種子的發(fā)芽數(shù),得到如下資料:

日期

4月1日

4月2日

4月3日

4月4日

4月5日

溫差

9

10

11

8

12

發(fā)芽數(shù)(顆)

38

30

24

41

17

利用散點(diǎn)圖,可知線性相關(guān)。

(1)求出關(guān)于的線性回歸方程,若4月6日星夜溫差,請根據(jù)你求得的線性同歸方程預(yù)測4月6日這一天實(shí)驗室每100顆種子中發(fā)芽顆數(shù);

(2)若從4月1日 4月5日的五組實(shí)驗數(shù)據(jù)中選取2組數(shù)據(jù),求這兩組恰好是不相鄰兩天數(shù)據(jù)的概率.

(公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象向左平移個單位長度后所得的函數(shù)為偶函數(shù),則關(guān)于函數(shù),下列命題正確的是( )

A. 函數(shù)在區(qū)間上有最小值 B. 函數(shù)在區(qū)間上單調(diào)遞增

C. 函數(shù)的一條對稱軸為 D. 函數(shù)的一個對稱點(diǎn)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù):fx)=x2mxnm, nR).

1)若m+n0,解關(guān)于x的不等式fxx(結(jié)果用含m式子表示);

2)若存在實(shí)數(shù)m,使得當(dāng)x[1,2]時,不等式xfx≤4x恒成立,求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案