已知函數(shù)的一個(gè)極值點(diǎn).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)時(shí),恒成立,求的取值范圍。

(Ⅰ)單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ)

解析試題分析:
解:(1)的一個(gè)極值點(diǎn)


,函數(shù)的單調(diào)增區(qū)間為
函數(shù)的單調(diào)減區(qū)間為
(2)由(1)知函數(shù)上單調(diào)遞減,在上單調(diào)遞增
當(dāng)時(shí),函數(shù)取得最小值,
時(shí),恒成立等價(jià)于,

考點(diǎn):利用導(dǎo)數(shù)求單調(diào)區(qū)間,不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題即不等式與函數(shù)的轉(zhuǎn)化
點(diǎn)評(píng):本題題型是高考常出現(xiàn)的類型,應(yīng)引起重視

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)已知在x=2時(shí)有極大值6,在x=1時(shí)有極小值.
⑴ 求的值;
⑵ 求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(Ⅰ)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若函數(shù)處取得極值,對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是函數(shù)的一個(gè)極值點(diǎn)。
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)).
①當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
②設(shè)的兩個(gè)極值點(diǎn),的一個(gè)零點(diǎn).證明:存在實(shí)數(shù),使得按某種順序排列后構(gòu)成等差數(shù)列,并求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)f(x)=x3+ax2+(a+6)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過原點(diǎn),且在原點(diǎn)處的切線斜率是3,求a,b的值;
(2)若f(x)為R上的單調(diào)遞增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分) 已知函數(shù),函數(shù)
(I)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(II)若,且函數(shù)上的最小值是2 ,求的值;
(III)對(duì)于(II)中所求的a值,若函數(shù),恰有三個(gè)零點(diǎn),求b的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分) 已知函數(shù)處取得極小值.
(1)求m的值。
(2)若上是增函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案