【題目】ABC的內(nèi)角AB,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.

1)求cosC;

2)若c,△ABC的面積為,求△ABC的周長.

【答案】1.26+2

【解析】

1)利用正弦定理、兩角和的正弦公式、誘導(dǎo)公式化簡已知條件,由此求得的值.

2)利用三角形的面積列方程,求得的值,結(jié)合余弦定理求得的值,進(jìn)而求得三角形的周長.

1)∵2cosC(acosB+bcosA)=c,∴由正弦定理可得:2cosC(sinAcosB+sinBcosA)=sinC,可得2cosCsin(A+B)=sinC,可得2sinCcosC=sinC,∵C為三角形的內(nèi)角,sinC>0,∴cosC.

2)∵由已知可得SabsinC=2,又sinC,∴ab=8,∴由已知及余弦定理可得a2+b22abcosC=12,∴a2+b2=20,從而(a+b)2=36,可得a+b=6,∴△ABC的周長為6+2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】光線從橢圓的一個焦點(diǎn)發(fā)出,被橢圓反射后會經(jīng)過橢圓的另一個焦點(diǎn);光線從雙曲線的一個焦點(diǎn)發(fā)出,被雙曲線反射后的反射光線等效于從另一個焦點(diǎn)射出.如圖,一個光學(xué)裝置由有公共焦點(diǎn),的橢圓與雙曲線構(gòu)成,現(xiàn)一光線從左焦點(diǎn)發(fā)出,依次經(jīng)反射,又回到了點(diǎn),歷時秒;若將裝置中的去掉,此光線從點(diǎn)發(fā)出,經(jīng)兩次反射后又回到了點(diǎn),歷時秒;若,則的離心率之比為( )

A. B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為某班35名學(xué)生的投籃成績(每人投一次)的條形統(tǒng)計圖,其中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全。已知該班學(xué)生投籃成績的中位數(shù)是5,則根據(jù)統(tǒng)計圖,則下列說法錯誤的是( )

A. 3球以下(含3球)的人數(shù)為10

B. 4球以下(含4球)的人數(shù)為17

C. 5球以下(含5球)的人數(shù)無法確定

D. 5球的人數(shù)和6球的人數(shù)一樣多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面平面,其中四邊形為矩形,四邊形為梯形,,,

1)求證:平面ABF;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為緩減人口老年化帶來的問題,中國政府在2016年1月1日作出全國統(tǒng)一實(shí)施全面的“二孩”政策,生“二孩”是目前中國比較流行的元素某調(diào)查機(jī)構(gòu)對某校學(xué)生做了一個是否同意父母生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”現(xiàn)已得知100人中同意父母生“二孩”占,統(tǒng)計情況如表:

性別屬性

同意父母生“二孩”

反對父母生“二孩”

合計

男生

10

女生

30

合計

100

請補(bǔ)充完整上述列聯(lián)表;

根據(jù)以上資料你是否有把握,認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請說明理由.

參考公式與數(shù)據(jù):,其中

k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩個盒子中分別裝有標(biāo)號為1、2、3、4的四個球,現(xiàn)從甲、乙兩個盒子中各取出1個球,每個球被取出的可能性相等.

)求取出的兩個球上標(biāo)號為相同數(shù)字的概率;

)求取出的兩個球上標(biāo)號之積能被3整除的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=+.

(1)當(dāng)m=0,求不等式f(x)≤9的解集;

(2)當(dāng)m=2,x(1,4),f(x) 2xa<0,a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,則方程恰有2個不同的實(shí)根,實(shí)數(shù)取值范圍__________________.

查看答案和解析>>

同步練習(xí)冊答案