【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求cosC;
(2)若c,△ABC的面積為,求△ABC的周長.
【答案】(1).(2)6+2
【解析】
(1)利用正弦定理、兩角和的正弦公式、誘導(dǎo)公式化簡已知條件,由此求得的值.
(2)利用三角形的面積列方程,求得的值,結(jié)合余弦定理求得的值,進(jìn)而求得三角形的周長.
(1)∵2cosC(acosB+bcosA)=c,∴由正弦定理可得:2cosC(sinAcosB+sinBcosA)=sinC,可得2cosCsin(A+B)=sinC,可得2sinCcosC=sinC,∵C為三角形的內(nèi)角,sinC>0,∴cosC.
(2)∵由已知可得SabsinC=2,又sinC,∴ab=8,∴由已知及余弦定理可得a2+b2﹣2abcosC=12,∴a2+b2=20,從而(a+b)2=36,可得a+b=6,∴△ABC的周長為6+2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光線從橢圓的一個焦點(diǎn)發(fā)出,被橢圓反射后會經(jīng)過橢圓的另一個焦點(diǎn);光線從雙曲線的一個焦點(diǎn)發(fā)出,被雙曲線反射后的反射光線等效于從另一個焦點(diǎn)射出.如圖,一個光學(xué)裝置由有公共焦點(diǎn),的橢圓與雙曲線構(gòu)成,現(xiàn)一光線從左焦點(diǎn)發(fā)出,依次經(jīng)與反射,又回到了點(diǎn),歷時秒;若將裝置中的去掉,此光線從點(diǎn)發(fā)出,經(jīng)兩次反射后又回到了點(diǎn),歷時秒;若,則與的離心率之比為( )
A. B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為某班35名學(xué)生的投籃成績(每人投一次)的條形統(tǒng)計圖,其中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全。已知該班學(xué)生投籃成績的中位數(shù)是5,則根據(jù)統(tǒng)計圖,則下列說法錯誤的是( )
A. 3球以下(含3球)的人數(shù)為10
B. 4球以下(含4球)的人數(shù)為17
C. 5球以下(含5球)的人數(shù)無法確定
D. 5球的人數(shù)和6球的人數(shù)一樣多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為緩減人口老年化帶來的問題,中國政府在2016年1月1日作出全國統(tǒng)一實(shí)施全面的“二孩”政策,生“二孩”是目前中國比較流行的元素某調(diào)查機(jī)構(gòu)對某校學(xué)生做了一個是否同意父母生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”現(xiàn)已得知100人中同意父母生“二孩”占,統(tǒng)計情況如表:
性別屬性 | 同意父母生“二孩” | 反對父母生“二孩” | 合計 |
男生 | 10 | ||
女生 | 30 | ||
合計 | 100 |
請補(bǔ)充完整上述列聯(lián)表;
根據(jù)以上資料你是否有把握,認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請說明理由.
參考公式與數(shù)據(jù):,其中
k |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個盒子中分別裝有標(biāo)號為1、2、3、4的四個球,現(xiàn)從甲、乙兩個盒子中各取出1個球,每個球被取出的可能性相等.
(Ⅰ)求取出的兩個球上標(biāo)號為相同數(shù)字的概率;
(Ⅱ)求取出的兩個球上標(biāo)號之積能被3整除的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=+.
(1)當(dāng)m=0時,求不等式f(x)≤9的解集;
(2)當(dāng)m=2時,若x∈(1,4),f(x) 2xa<0,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com