【題目】在直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為 曲線的極坐標(biāo)方程為,與交于點(diǎn).
(1)寫(xiě)出曲線的普通方程及直線的直角坐標(biāo)方程,并求;
(2)設(shè)為曲線上的動(dòng)點(diǎn),求面積的最大值.
【答案】(1);;;(2)
【解析】
(1)對(duì)曲線的參數(shù)方程移項(xiàng)、平方相加,消去參數(shù);由直線的極坐標(biāo)方程可得直線的普通方程;將代入曲線方程中,求得,進(jìn)而求得;
(2)將極坐標(biāo)方程化為直角坐標(biāo)方程得橢圓的方程,再設(shè)點(diǎn)坐標(biāo)為,求出點(diǎn)到直線的最大距離,即可得到面積的最大值.
(1)因?yàn)榍(為參數(shù)),則,
所以曲線的普通方程為:;
直線:的普通方程為:;
將代入,解得:,
所以.
(2)曲線的普通方程為,設(shè),
則點(diǎn)到直線的距離,
當(dāng)時(shí),等號(hào)成立,
所以面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng),函數(shù),證明:存在唯一的極大值點(diǎn),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且在處的切線方程為.
(1)求的解析式,并討論其單調(diào)性.
(2)若函數(shù),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有名學(xué)生排成一排,求分別滿足下列條件的排法種數(shù),要求列式并給出計(jì)算結(jié)果.
(1)甲不在兩端;
(2)甲、乙相鄰;
(3)甲、乙、丙三人兩兩不得相鄰;
(4)甲不在排頭,乙不在排尾。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)集合,或,對(duì)于任意,定義,對(duì)任意,定義,記為集合的元素個(gè)數(shù),求的值;
(2)在等差數(shù)列和等比數(shù)列中,,,是否存在正整數(shù),使得數(shù)列的所有項(xiàng)都在數(shù)列中,若存在,求出所有的,若不存在,說(shuō)明理由;
(3)已知當(dāng)時(shí),有,根據(jù)此信息,若對(duì)任意,都有,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、是橢圓:的左右焦點(diǎn),焦距為6,橢圓上存在點(diǎn)使得,且的面積為9.
(Ⅰ)求的方程;
(Ⅱ)過(guò)的直線與橢圓相交于,兩點(diǎn),直線與軸不重合,是軸上一點(diǎn),且,求點(diǎn)縱坐標(biāo)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),設(shè)直線分別是曲線的兩條不同的切線;
(1)若函數(shù)為奇函數(shù),且當(dāng)時(shí),有極小值為-4;
(i)求的值;
(ii)若直線亦與曲線相切,且三條不同的直線交于點(diǎn),求實(shí)數(shù)m的取值范圍;
(2)若直線,直線與曲線切于點(diǎn)B且交曲線于點(diǎn)D,直線與曲線切于點(diǎn)C且交曲線于點(diǎn)A,記點(diǎn)的橫坐標(biāo)分別為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是函數(shù)的圖象上的一點(diǎn),等比數(shù)列的前項(xiàng)和為,數(shù)列的首項(xiàng)為,且前項(xiàng)和滿足:.
(1)求數(shù)列,的通項(xiàng)公式;
(2)若數(shù)列的通項(xiàng),求數(shù)列的前項(xiàng)和;
(3)若數(shù)列的前項(xiàng)和為,是否存在最大的整數(shù),使得對(duì)任意的正整數(shù)n,均有總成立?若成立,求出t;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在的二項(xiàng)展開(kāi)式中,所有項(xiàng)的二項(xiàng)式系數(shù)之和為.
(1)求展開(kāi)式的常數(shù)項(xiàng):
(2)求展開(kāi)式中所有奇數(shù)項(xiàng)的系數(shù)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com