已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設函數(shù)f(x)=.
(1)求a、b的值及函數(shù)f(x)的解析式;
(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]時有解,求實數(shù)k的取值范圍.
(1)a=1,b=0,g(x)=x2-2x+1,f(x)=x+-2.(2)(-∞,1]
(1)g(x)=ax2-2ax+1+b,由題意得

 (舍).
∴a=1,b=0,g(x)=x2-2x+1,f(x)=x+-2.
(2)不等式f(2x)-k·2x≥0,即2x-2≥k·2x,
∴k≤-2·+1.
設t=,則k≤t2-2t+1,∵x∈[-1,1],故t∈.
記h(t)=t2-2t+1,∵t∈,∴h(t)max=1,
故所求k的取值范圍是(-∞,1]
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)定義在(―1,1)上,對于任意的,有,且當時,。
(1)驗證函數(shù)是否滿足這些條件;
(2)判斷這樣的函數(shù)是否具有奇偶性和單調性,并加以證明;
(3)若,求方程的解。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)f(x)=a為常數(shù)且a∈(0,1).
(1)當a=時,求f;
(2)若x0滿足f[f(x0)]=x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點.證明函數(shù)f(x)有且僅有兩個二階周期點,并求二階周期點x1,x2
(3)對于(2)中的x1,x2,設A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),記△ABC的面積為S(a),求S(a)在區(qū)間[]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)是定義域為的偶函數(shù). 當時, 若關于的方程有且只有7個不同實數(shù)根,則實數(shù)的取值范圍是      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

”是“函數(shù)在區(qū)間內單調遞增”的(   )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=(ax2+x)ex,其中e是自然數(shù)的底數(shù),a∈R.
(1)當a<0時,解不等式f(x)>0;
(2)若f(x)在[-1,1]上是單調函數(shù),求a的取值范圍;
(3)當a=0時,求整數(shù)k的所有值,使方程f(x)=x+2在[k,k+1]上有解.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設函數(shù)f(x)是定義在R上的奇函數(shù),且當x≥0時,f(x)=x2,若對任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,則實數(shù)t的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給定函數(shù):①y=,②y=(x+1),③y=|x-1|,④y=2x+1,其中在區(qū)間(0,1)上單調遞減的函數(shù)是____________.(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知f(x)是定義在實數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}等于(  )
A.{x|x≤0或1≤x≤4}
B.{x|0≤x≤4}
C.{x|x≤4}
D.{x|0≤x≤1或x≥4}

查看答案和解析>>

同步練習冊答案