已知函數(shù).
(I)若,求函數(shù)的單調區(qū)間;
(Ⅱ)求證:
(Ⅲ)若函數(shù)的圖象在點處的切線的傾斜角為,對于任意的,函數(shù)是的導函數(shù))在區(qū)間上總不是單調函數(shù),求的取值范圍。
(I)的單調增區(qū)間為,減區(qū)間為 ;(Ⅱ) 證明詳見解析;(Ⅲ)
解析試題分析:(Ⅰ)先求導數(shù),然后求導數(shù)大于或小于零的區(qū)間,即得原函數(shù)的單調區(qū)間;(Ⅱ)由(Ⅰ) 可知 當時,即對一切成立,可得,然后疊乘即可. (Ⅲ)求出,則,求出,,再求出,則,由于:對于任意的,恒成立,,所以,解出m即可.
試題解析:解:(Ⅰ)當時, ,解得;解得[的單調增區(qū)間為,減區(qū)間為
(Ⅱ)證明如下: 由(Ⅰ)可知 當時,即,
∴對一切成立
∵,則有,∴
(Ⅲ) ∵∴得, ,∴
∵在區(qū)間上總不是單調函數(shù),且∴
由題意知:對于任意的,恒成立, 所以,,∴.
考點:1.函數(shù)的導數(shù)和導數(shù)的性質;2.不等式的證明;3.導數(shù)性質的應用.
科目:高中數(shù)學 來源: 題型:解答題
如圖,某自來水公司要在公路兩側排水管,公路為東西方向,在路北側沿直線排水管,在路南側沿直線排水管(假設水管與公路的南,北側在一條直線上且水管的大小看作為一條直線),現(xiàn)要在矩形區(qū)域ABCD內沿直線EF將與接通.已知AB = 60m,BC = 60m,公路兩側排管費用為每米1萬元,穿過公路的EF部分的排管費用為每米2萬元,設EF與AB所成角為.矩形區(qū)域內的排管費用為W.
(1)求W關于的函數(shù)關系式;
(2)求W的最小值及相應的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導函數(shù)的圖象如圖,f(x)=6lnx+h(x)
(1)求f(x)在x=3處的切線斜率;
(2)若f(x)在區(qū)間(m,m+)上是單調函數(shù),求實數(shù)m的取值范圍;
(3)若對任意k∈[-1,1],函數(shù)y=kx(x∈(0,6])的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com