方程x3-6x2+9x-10=0的實(shí)根個數(shù)是


  1. A.
    3
  2. B.
    2
  3. C.
    1
  4. D.
    0
C
解析:

試題分析:由x3-6x2+9x-10=0得,x3=6x2-9x+10,畫出y=x3,y=6x2-9x+10的圖象,可知由圖得一個交點(diǎn).故選C。.
考點(diǎn):本題主要考查函數(shù)零點(diǎn)與方程的根個數(shù)的判斷。
點(diǎn)評:數(shù)形結(jié)合是解決零點(diǎn)問題的有力工具,要善于將原問題轉(zhuǎn)化成兩個函數(shù)圖象的交點(diǎn)問題是解決此問題的關(guān)鍵.?dāng)?shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:新課標(biāo)教材全解高中數(shù)學(xué)人教A版必修1 人教A版 題型:044

試證方程x3-6x2+9=0在區(qū)間(0,1)內(nèi)不可能有兩個不同的實(shí)根.

查看答案和解析>>

同步練習(xí)冊答案