【題目】已知函數(shù) ,把函數(shù)f(x)的圖象向右平移 個(gè)單位得函數(shù)g(x)的圖象,則下面結(jié)論正確的是(
A.函數(shù)g(x)是奇函數(shù)
B.函數(shù)g(x)在區(qū)間[π,2π]上是增函數(shù)
C.函數(shù)g(x)的最小正周期是4π
D.函數(shù)g(x)的圖象關(guān)于直線x=π對(duì)稱

【答案】B
【解析】解:把函數(shù) 的圖象向右平移 個(gè)單位長(zhǎng)度, 得函數(shù)g(x)=sin[ (x﹣ )+ ]=﹣cos
A、數(shù)g(x)是偶函數(shù),故本選項(xiàng)錯(cuò)誤;
B、當(dāng)x∈[π,2π]時(shí), ∈[ , ],則函數(shù)g(x)=﹣cos 單調(diào)遞增,即函數(shù)g(x)在區(qū)間[π,2π]上增函數(shù),故本選項(xiàng)正確;
C、函數(shù)g(x)的最小正周期為= =8π,故本選項(xiàng)錯(cuò)誤;
D、函數(shù)g(x)的圖象關(guān)于直線x=4kπ(k∈Z)對(duì)稱,故本選項(xiàng)錯(cuò)誤;
故選:B.
【考點(diǎn)精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為 ,曲線C2的極坐標(biāo)方程為
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上一點(diǎn),Q曲線C2上一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋擲三枚不同的具有正、反兩面的金屬制品A1、A2、A3 , 假定A1正面向上的概率為 ,A2正面向上的概率為 ,A3正面向上的概率為t(0<t<1),把這三枚金屬制品各拋擲一次,設(shè)ξ表示正面向上的枚數(shù).
(1)求ξ的分布列及數(shù)學(xué)期望Eξ(用t表示);
(2)令an=(2n﹣1)cos( Eξ)(n∈N+),求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖程序框圖,如果輸出k=5,那么空白的判斷框中應(yīng)填入的條件是(
A.S>﹣25
B.S<﹣26
C.S<﹣25
D.S<﹣24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,現(xiàn)將梯形ABCD沿OB折起如圖乙所示的四棱錐P﹣OBCD,使得PC= ,點(diǎn)E是線段PB上一動(dòng)點(diǎn).
(1)證明:DE和PC不可能垂直;
(2)當(dāng)PE=2BE時(shí),求PD與平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABCA1B1C1中,側(cè)面ABB1A1為矩形,AB=3,AA1=3 ,D為AA1的中點(diǎn),BD與AB1交于點(diǎn)O,CO⊥側(cè)面ABB1A1 . (Ⅰ)證明:BC⊥AB1
(Ⅱ)若OC=OA,求二面角A1﹣AC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={(x,y)||x|+|y|≤2},B={(x,y)∈A|y≤x2},從集合A中隨機(jī)地取出一個(gè)元素P(x,y),則P(x,y)∈B的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代有著輝煌的數(shù)學(xué)研究成果.《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、…、《輯古算經(jīng)》等算經(jīng)十書,有著十分豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).這10部專著中有7部產(chǎn)生于魏晉南北朝時(shí)期.某中學(xué)擬從這10部名著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部名著中至少有一部是魏晉南北朝時(shí)期的名著的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,a2=b2+c2+bc. (Ⅰ)求角A的大小;
(Ⅱ)若a=2 ,b=2,求c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案