【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)已知,直線與曲線交于, 兩點,若,求的值.
【答案】(Ⅰ), .
(Ⅱ).
【解析】試題分析:(Ⅰ)消去參數(shù),即可得到直線的普通方程,在利用極坐標(biāo)與直角坐標(biāo)的互化,即可得到直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)將直線的參數(shù)方程與的直角坐標(biāo)方程聯(lián)立,求得,進而得到,再由題設(shè),即可求解的值.
試題解析:
(Ⅰ)由消去參數(shù),得,
由, ,
得直線的極坐標(biāo)方程為,
由,得,
由, 代入,得.
(Ⅱ)將直線的參數(shù)方程與的直角坐標(biāo)方程聯(lián)立并整理得,
設(shè)點, 分別對應(yīng)參數(shù), ,則, 恰為上述方程的根,
由可得,得.
則, ,所以 ,
由,得,
即,解得或(舍去).
故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某輛汽車以千米/小時的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求)時,每小時的油耗(所需要的汽油量)為升,其中為常數(shù),且.
(1)若汽車以千米/小時的速度行駛時,每小時的油耗為升,欲使每小時的油耗不超過升,求的取值范圍;
(2)求該汽車行駛千米的油耗的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,其中為常數(shù).
(1)當(dāng),且時,求函數(shù)的單調(diào)區(qū)間及極值;
(2)已知, ,若函數(shù)有2個零點, 有6個零點,試確定的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在高二數(shù)學(xué)競賽初賽考試后,對90分以上(含90分)的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,若分?jǐn)?shù)段的學(xué)生人數(shù)為2.
(1)求該校成績在分?jǐn)?shù)段的學(xué)生人數(shù);
(2)估計90分以上(含90分)的學(xué)生成績的眾數(shù)、中位數(shù)和平均數(shù)(結(jié)果保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,橢圓的四個頂點圍成的四邊形的面積為4.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)直線與橢圓交于, 兩點, 的中點在圓上,求(為坐標(biāo)原點)面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若對任意,都有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點到直線的距離為.
(1)求橢圓的方程;
(2)過點作直線交橢圓于兩點,交軸于點,滿足,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=的定義域為R,則實數(shù)m取值范圍為
A.{m|–1≤m≤0}B.{m|–1<m<0}
C.{m|m≤0}D.{m|m<–1或m>0}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com