【題目】已知函數(shù)f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范圍;
(2)在(1)的范圍內(nèi)求y=g(x)﹣f(x)的最小值.
【答案】
(1)解:∵f(x)=log2(x+1),g(x)= ,g(x)≥f(x),
∴l(xiāng)og2(x+1)≤ ,
∴3x+1≥x+1>0,
∴x≥0.
(2)解:∵y=g(x)﹣f(x)
= ﹣log2(x+1)
= (x≥0).
令h(x)= =3﹣ ,
則h(x)為[0,+∞)上的增函數(shù),
∴h(x)min=h(0)=1,
由復(fù)合函數(shù)的性質(zhì)得:y=g(x)﹣f(x)的最小值為log21=0
【解析】(1)利用對數(shù)函數(shù)y=log2x的單調(diào)性即可求得g(x)≥f(x)成立的x的取值范圍;(2)利用函數(shù)y=g(x)﹣f(x)的性質(zhì)即可求得其最小值.
【考點精析】認(rèn)真審題,首先需要了解對數(shù)函數(shù)的單調(diào)性與特殊點(過定點(1,0),即x=1時,y=0;a>1時在(0,+∞)上是增函數(shù);0>a>1時在(0,+∞)上是減函數(shù)).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓的極坐標(biāo)方程為: .若以極點為原點,極軸所在直線為軸建立平面直角坐標(biāo)系.
(Ⅰ)求圓的直角坐標(biāo)方程及其參數(shù)方程;
(Ⅱ)在直角坐標(biāo)系中,點是圓上動點,求的最大值,并求出此時
點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處有極值10.
(1)求實數(shù)的值;
(2)設(shè),討論函數(shù)在區(qū)間上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)表示同一函數(shù)的是( )
A. 與y=x+3
B. 與y=x﹣1
C.y=x0(x≠0)與y=1(x≠0)
D.y=2x+1,x∈Z與y=2x﹣1,x∈Z
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海上某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為12海里;在A處看燈塔C在貨輪的北偏西30°,距離為8海里;貨輪向正北由A處行駛到D處時看燈塔B在貨輪的北偏東120°.(要畫圖)
(1)A處與D處之間的距離;
(2)燈塔C與D處之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=x2﹣ax+b,其圖象對稱軸為直線x=2,且g(x)的最小值為﹣1,設(shè)f(x)= .
(1)求實數(shù)a,b的值;
(2)若不等式f(3x)﹣t3x≥0在x∈[﹣2,2]上恒成立,求實數(shù)t的取值范圍;
(3)若關(guān)于x的方程f(|2x﹣2|)+k ﹣3k=0有三個不同的實數(shù)解,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com