【題目】甲、乙兩班舉行數(shù)學知識競賽,參賽學生的競賽得分統(tǒng)計結果如下表:

班級

參賽人數(shù)

平均數(shù)

中位數(shù)

眾數(shù)

方差

45

83

86

85

82

45

83

84

85

133

某同學分析上表后得到如下結論:

①甲、乙兩班學生的平均成績相同;

②乙班優(yōu)秀的人數(shù)少于甲班優(yōu)秀的人數(shù)(競賽得分分為優(yōu)秀);

③甲、乙兩班成績?yōu)?/span>85分的學生人數(shù)比成績?yōu)槠渌档膶W生人數(shù)多;

④乙班成績波動比甲班小.

其中正確結論有(

A.1B.2C.3D.4

【答案】C

【解析】

①看兩班的平均數(shù)易知正確;②看兩班的中位數(shù)正確;③看兩班的眾數(shù)正確;④看兩班的方差.

①從表看出甲、乙兩班學生的平均成績相同,正確;

②因為乙班的中位數(shù)比甲班的小,所以正確;

③根據(jù)甲、乙兩班的眾數(shù),所以正確;

④因為乙班的方差比甲的大,所以波動比甲班大,所以錯誤

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,焦距為,與拋物線有公共焦點.

1)求橢圓C1與拋物線的方程;

2)已知直線是圓的一條切線,與橢圓C1交于兩點,若直線斜率存在且不為,在橢圓C1上存在點,使,其中為坐標原點,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)若直線與曲線交于兩點,且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,是等腰直角三角形,,點D是側棱上的一點.

1)證明:當點D的中點時,平面BCD;

2)若二面角的余弦值為求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月兩種移動支付方式的使用情況,從全校學生隨機抽取了100人,發(fā)現(xiàn)使用支付方式的學生共有90人,使用支付方式的學生共有70人,,兩種支付方式都使用的有60人,則該校使用支付方式的學生人數(shù)與該校學生總數(shù)比值的估計值為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為提高生產效率,開展技術創(chuàng)新活動,提出了完成某項生產任務的兩種新的生產方式,為比較兩種生產方式的效率,選取40名工人,將他們隨機分成兩組,每組20.第一組工人用第一種生產方式,第二組工人用第二種生產方式,根據(jù)工人完成生產任務的工作時間(單位:min)繪制了如圖所示的莖葉圖:

1)根據(jù)莖葉圖判斷哪種生產方式的效率更高?并說明理由;

2)求40名工人完成生產任務所需時間的中位數(shù),并將完成生產任務所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表,再根據(jù)列聯(lián)表,能否有99.9%的把握認為兩種生產方式的效率有差異?

超過

不超過

第一種生產方式

第二種生產方式

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的方程e為自然對數(shù)的底數(shù))有且僅有6個不等的實數(shù)解,則實數(shù)a的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是一塊半徑為4米的圓形鐵皮,現(xiàn)打算利用這塊鐵皮做一個圓柱形油桶.具體做法是從中剪裁出兩塊全等的圓形鐵皮做圓柱的底面,剪裁出一個矩形做圓柱的側面(接縫忽略不計),為圓柱的一條母線,點上,點的一條直徑上,,分別與直線、相切,都與內切.

1)求圓形鐵皮半徑的取值范圍;

2)請確定圓形鐵皮半徑的值,使得油桶的體積最大.(不取近似值)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學大學畢業(yè)后,決定利用所學專業(yè)進行自主創(chuàng)業(yè),經(jīng)過市場調查,生產一小型電子產品需投入固定成本2萬元,每生產x萬件,需另投入流動成本C(x)萬元,當年產量小于7萬件時,C(x)=x2+2x(萬元);當年產量不小于7萬件時,C(x)=6x+1nx+﹣17(萬元).已知每件產品售價為6元,假若該同學生產的產M當年全部售完.

(1)寫出年利潤P(x)(萬元)關于年產量x(萬件)的函數(shù)解析式;(注:年利潤=年銷售收人﹣固定成本﹣流動成本

(2)當年產量約為多少萬件時,該同學的這一產品所獲年利潤最大?最大年利潤是多少?(取e3≈20)

查看答案和解析>>

同步練習冊答案