動(dòng)圓過(guò)定點(diǎn),且與直線(xiàn)相切,其中.設(shè)圓心的軌跡的程為
(1)求;
(2)曲線(xiàn)上的一定點(diǎn)(0) ,方向向量的直線(xiàn)(不過(guò)P點(diǎn))與曲線(xiàn)交與A、B兩點(diǎn),設(shè)直線(xiàn)PA、PB斜率分別為,,計(jì)算;
(3)曲線(xiàn)上的兩個(gè)定點(diǎn)、,分別過(guò)點(diǎn)作傾斜角互補(bǔ)的兩條直線(xiàn)分別與曲線(xiàn)交于兩點(diǎn),求證直線(xiàn)的斜率為定值;
(1)
(2)0(3)
【解析】
試題分析:(1)過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn),垂足為,由題意知:,即動(dòng)點(diǎn)到定點(diǎn)與定直線(xiàn)的距離相等,由拋物線(xiàn)的定義知,點(diǎn)的軌跡為拋物線(xiàn), 2分
其中為焦點(diǎn),為準(zhǔn)線(xiàn),所以軌跡方 程為; 4分
(2)證明:設(shè) A()、B()
過(guò)不過(guò)點(diǎn)P的直線(xiàn)方程為 5分
由得 6分
則, 7分
== 8分
==0. 10分
(3)設(shè),
== 12分
設(shè)的直線(xiàn)方程為為與曲線(xiàn)的交點(diǎn)
由 ,的兩根為
則 14分
同理,得 15分
代入(***)計(jì)算 17分
18分
考點(diǎn):直線(xiàn)與拋物線(xiàn)的位置關(guān)系的運(yùn)用
點(diǎn)評(píng):解決的關(guān)鍵是能利用直線(xiàn)方程與拋物線(xiàn)方程建立方程組,結(jié)合韋達(dá)定理和斜率公式來(lái)的餓到求解,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知?jiǎng)訄A過(guò)定點(diǎn),且與直線(xiàn)相切.
(1) 求動(dòng)圓的圓心軌跡的方程;
(2) 是否存在直線(xiàn),使過(guò)點(diǎn),并與軌跡交于兩點(diǎn),
且滿(mǎn)足?若存在,求出直線(xiàn)的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(05年山東卷理)(14分)
已知?jiǎng)訄A過(guò)定點(diǎn),且與直線(xiàn)相切,其中.
(I)求動(dòng)圓圓心的軌跡的方程;
(II)設(shè)A、B是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線(xiàn)和的傾斜角分別為和,當(dāng)變化且為定值時(shí),證明直線(xiàn)恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知?jiǎng)訄A過(guò)定點(diǎn),且與直線(xiàn)相切.
(1) 求動(dòng)圓的圓心軌跡的方程;
(2) 是否存在直線(xiàn),使過(guò)點(diǎn),并與軌跡交于兩點(diǎn),
且滿(mǎn)足?若存在,求出直線(xiàn)的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知?jiǎng)訄A過(guò)定點(diǎn),且與直線(xiàn)相切.
(1) 求動(dòng)圓的圓心軌跡的方程;
(2) 是否存在直線(xiàn),使過(guò)點(diǎn),并與軌跡交于兩點(diǎn),且滿(mǎn)足
?若存在,求出直線(xiàn)的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分14分)
已知?jiǎng)訄A過(guò)定點(diǎn),且與直線(xiàn)相切.
(1)求動(dòng)圓的圓心軌跡的方程;
(2) 是否存在直線(xiàn):,并與軌跡交于兩點(diǎn),且滿(mǎn)足?若存在,求出直線(xiàn)的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com