精英家教網 > 高中數學 > 題目詳情

【題目】已知三角形△ABC的三邊長構成公差為2的等差數列,且最大角的正弦值為 ,則這個三角形的周長為(
A.15
B.18
C.21
D.24

【答案】A
【解析】解:根據題意設△ABC的三邊長為a,a+2,a+4,且a+4所對的角為最大角α,
∵sinα= ,∴cosα= 或﹣ ,
當cosα= 時,α=60°,不合題意,舍去;
當cosα=﹣ 時,α=120°,由余弦定理得:cosα=cos120°= =﹣
解得:a=3或a=﹣2(不合題意,舍去),
則這個三角形周長為a+a+2+a+4=3a+6=9+6=15.
故選:A.
根據三角形ABC三邊構成公差為2的等差數列,設出三邊為a,a+2,a+4,根據最大角的正弦值求出余弦值,利用余弦定理求出a的值,即可確定出三角形的周長.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣mx+1﹣m2 , 若|f(x)|在[0,1]上單調遞增,則實數m的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有以下三個案例:

案例一:從同一批次同類型號的10袋牛奶中抽取3袋檢測其三聚氰胺含量;

案例二:某公司有員工800人:其中高級職稱的160人,中級職稱的320人,初級職稱200人,其余人員120人.從中抽取容量為40的樣本,了解該公司職工收入情況;

案例三:從某校1000名學生中抽10人參加主題為“學雷鋒,樹新風”的志愿者活動.

(1)你認為這些案例應采用怎樣的抽樣方式較為合適?

(2)在你使用的分層抽樣案例中寫出每層抽樣的人數;

(3)在你使用的系統(tǒng)抽樣案例中按以下規(guī)定取得樣本編號:如果在起始組中隨機抽取的碼為(編號從0開始),那么第組(組號從0開始,)抽取的號碼的百位數為組號,后兩位數為的后兩位數.若,試求出時所抽取的樣本編號.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設△ABC的內角A、BC所對的邊分別為a、bc,已知a=1,b=2, cosC=

I求△ABC的周長;II)求cosA﹣C)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】醫(yī)院用甲、乙兩種原料為手術后的病人配營養(yǎng)餐.甲種原料每10g含5單位蛋白質和10單位鐵質,售價3元;乙種原料每10g含7單位蛋白質和4單位鐵質,售價2元.若病人每餐至少需要35單位蛋白質和40單位鐵質.試問:應如何使用甲、乙原料,才能既滿足營養(yǎng),又使費用最省.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和Sn= n,
(1)求通項公式an的表達式;
(2)令bn=an2n1 , 求數列{bn}的前n項的和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l的方程為3x+4y﹣12=0,求直線l'的方程,使得:
(1)l'與l平行,且過點(﹣1,3);
(2)l'與l垂直,且l'與兩軸圍成的三角形面積為4.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,已知底面,異面直線所成角等于.

(1)求證: 平面平面;

(2)求直線和平面所成角的正弦值;

(3) 在棱上是否存在一點,使得平面與平面所成銳二面角的正切值為?若存在,指出點在棱上的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}為等比數列,數列{bn}滿足bn=na1+(n﹣1)a2+…+2an1+an , n∈N* , 已知b1=m, ,其中m≠0.
(1)求數列{an}的首項和公比;
(2)當m=1時,求bn;
(3)設Sn為數列{an}的前n項和,若對于任意的正整數n,都有Sn∈[1,3],求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案