【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,,求實(shí)數(shù)的取值范圍.
【答案】(1)見解析(2)
【解析】
(1)根據(jù)題意,知的定義域,,分類討論參數(shù),當(dāng),,時,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;
(2)由題知,所以,求時,,轉(zhuǎn)化為,分類討論,根據(jù)導(dǎo)數(shù)研究函數(shù)單調(diào)性,求出符合時,實(shí)數(shù)的取值范圍.
解:(1)的定義域,,
當(dāng)時,,;,,
即在上單調(diào)遞增,在上單調(diào)遞減;
當(dāng)時,,即在上單調(diào)遞增,
當(dāng)時,,;,或,
即在和上單調(diào)遞增,在上單調(diào)遞減;
當(dāng)時,,;,或,
即在和上單調(diào)遞增,在上單調(diào)遞減.
(2)由題知,所以,
當(dāng)時,,所以在上單調(diào)遞減,
即不滿足題意;
當(dāng)時,在單調(diào)遞增,即,符合題意;
當(dāng)時,由(1)得:
當(dāng)時,即時,在單調(diào)遞增,
即,符合題意;
當(dāng)時,即時,在單調(diào)遞減,在單調(diào)遞增,
即,不合題意,舍去.
綜上可知.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點(diǎn)為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)如圖,過定點(diǎn)的直線交橢圓于兩點(diǎn),連接并延長交于,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從學(xué)生會宣傳部6名成員(其中男生4人,女生2人)中,任選3人參加某省舉辦的“我看中國改革開放三十年”演講比賽活動.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率;
(3)設(shè)“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(B)和P(B|A).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于某設(shè)備的使用年限(年)和所支出的維修費(fèi)(萬元)有如下統(tǒng)計資料:
若由資料知,對呈線性相關(guān)關(guān)系.
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)估計使用年限為10年時,維修費(fèi)用約是多少?(精確到兩位小數(shù));
(3)計算第2年和第6年的殘差.
附:回歸直線的斜率和截距的最小二乘估計分別為;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓經(jīng)過定點(diǎn),且與定直線相切.
(1)求動圓圓心的軌跡方程;
(2)已知點(diǎn),過點(diǎn)作直線與交于,兩點(diǎn),過點(diǎn)作軸的垂線分別與直線,交于點(diǎn),(為原點(diǎn)),求證:為線段中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)拋物線的準(zhǔn)線與軸交于橢圓的右焦點(diǎn),為橢圓的左焦點(diǎn),橢圓的利息率為,拋物線與橢圓交于軸上方一點(diǎn),連接并延長其交拋物線于點(diǎn),為拋物線上一動點(diǎn),且在,之間移動.
(1)當(dāng)取最小值時,求的值;
(2)若的邊長恰好是三個連續(xù)的自然數(shù),當(dāng)的面積取最大值時,求面積最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,上、下頂點(diǎn)分別是、,上、下焦點(diǎn)分別是、,焦距為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)若為橢圓上異于、的動點(diǎn),過作與軸平行的直線,直線與交于點(diǎn),直線與直線交于點(diǎn),判斷是否為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從數(shù)列中取出部分項(xiàng)組成的數(shù)列稱為數(shù)列的“子數(shù)列”.
(1)若等差數(shù)列的公差,其子數(shù)列恰為等比數(shù)列,其中,,,求;
(2)若,,判斷數(shù)列是否為的“子數(shù)列”,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某工廠生產(chǎn)的某種產(chǎn)品中抽取1000件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻率分布直方圖:
(1)求這1000件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)
(2)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中以近似為樣本平均數(shù),近似為樣本方差.
(。├迷撜龖B(tài)分布,求;
(ⅱ)某用戶從該工廠購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標(biāo)值為于區(qū)間(127.6,140)的產(chǎn)品件數(shù),利用(。┑慕Y(jié)果,求.
附:.若,則,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com