【題目】已知函數(shù)
(1)若直線與的圖象相切,求實(shí)數(shù)的值;
(2)設(shè),討論曲線與曲線公共點(diǎn)的個(gè)數(shù);
(3)設(shè),比較與的大小,并說明理由.
【答案】(1)(2)答案不唯一,詳情見解析(3),證明見解析
【解析】
(1)設(shè)切點(diǎn)為,由,切點(diǎn)過直線聯(lián)立求解即可;
(2)求曲線與曲線公共點(diǎn)的個(gè)數(shù)即求與的公共點(diǎn)個(gè)數(shù),通過研究導(dǎo)數(shù)性質(zhì)確定函數(shù)增減性,討論與函數(shù)最值點(diǎn)大小即可;
(3)可先通過試值,預(yù)判,原不等式可表示為,變形得,再令,再結(jié)合換元法和構(gòu)造函數(shù)法即可求證
(1)設(shè)切點(diǎn)為,則,又切點(diǎn)過直線,所以,聯(lián)立求解可得,;
(2)原題可等價(jià)轉(zhuǎn)化為求與的公共點(diǎn)個(gè)數(shù),
令,令可得,當(dāng)時(shí),,單增;當(dāng)時(shí),,單減;故,
又當(dāng)時(shí),,當(dāng)時(shí),由冪函數(shù)的增長(zhǎng)性遠(yuǎn)遠(yuǎn)大于對(duì)數(shù)函數(shù)可知,,故的大致圖像為
當(dāng)時(shí),與有兩個(gè)共同點(diǎn);
當(dāng)時(shí),與有一個(gè)公共點(diǎn);
當(dāng)時(shí),與無公共點(diǎn);
(3),證明如下,要證,即證,即,令,則原式變?yōu)?/span>,即,
令,則,故在上單增,所以當(dāng),又,所以恒成立,原式得證
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了比較注射,兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做試驗(yàn),將這200只家兔隨機(jī)地分成兩組,每組100只,其中一組注射藥物,另一組注射藥物.下表1和表2分別是注射藥物和藥物的試驗(yàn)結(jié)果.(皰疹面積單位:)
表1:注射藥物后皮膚皰疹面積的頻數(shù)分布表
皰疹面積 | ||||
頻數(shù) | 30 | 40 | 20 | 10 |
表2:注射藥物后皮膚皰疹面積的頻數(shù)分布表
皰疹面積 | |||||
頻數(shù) | 10 | 25 | 20 | 30 | 15 |
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(1)完成下面頻率分布直方圖,并比較注射兩種藥物后皰疹面積的中位數(shù)大。ú槐厮愠鲋形粩(shù));
(2)完成下面列聯(lián)表,并回答能否有99.9%的把握認(rèn)為“注射藥物后的皰疹面積與注射藥物后的皰疹面積有差異”.
表3:
皰疹面積小于 | 皰疹面積不小于 | 合計(jì) | |
注射藥物 | |||
注射藥物 | |||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】七巧板是一種古老的中國(guó)傳統(tǒng)智力玩具,顧名思義,是由七塊板組成的.而這七塊板可拼成許多圖形.如圖中的正方形七巧板就是由五塊等腰直角三角形、一塊正方形和一塊平行四邊形組成的.若向正方形內(nèi)隨機(jī)的拋10000顆小米粒(大小忽略不計(jì)),則落在陰影部分的小米粒大約為( )
A.3750B.2500C.1875D.1250
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若不等式對(duì)任意 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,為等邊三角形,邊長(zhǎng)為2,為等腰直角三角形,,,,平面平面ABCD.
(1)證明:平面PAD;
(2)求平面PAD與平面PBC所成銳二面角的余弦值;
(3)棱PD上是否存在一點(diǎn)E,使得平面PBC?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,四邊形,為矩形,平面平面,平面,,,為棱的中點(diǎn).
(1)證明:;
(2)設(shè)與的交點(diǎn)為,試問:在線段上是否存在一點(diǎn),使得平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y﹣29=0相切.
(1)求圓的方程;
(2)設(shè)直線ax﹣y+5=0(a>0)與圓相交于A,B兩點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)在(2)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線l過點(diǎn)P(﹣2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建極坐標(biāo)系,直線的極坐標(biāo)方程為
(Ⅰ)求的極坐標(biāo)方程;
(Ⅱ)射線與圓C的交點(diǎn)為與直線的交點(diǎn)為,求的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com