【題目】已知f(x)是R上的奇函數(shù),且當x>0時,f(x)=-2x2+4x+3.
(1)求f(x)的表達式;
(2)畫出f(x)的圖象,并指出f(x)的單調(diào)區(qū)間.
【答案】
(1)解:設(shè)x<0,則-x>0,
于是f(-x)=-2(-x)2-4x+3=-2x2-4x+3.
又∵f(x)為奇函數(shù),∴f(-x)=-f(x).
因此f(x)=2x2+4x-3.
又∵f(0)=0,
∴f(x)=
(2)解:先畫出y=f(x)(x>0)的圖象,利用奇函數(shù)的對稱性可得到相應(yīng)y=f(x)(x<0)的圖象,其圖象如圖所示.由圖可知,其增區(qū)間為[-1,0)和(0,1],減區(qū)間為(-∞,-1]和[1,+∞).
【解析】(1)由奇函數(shù)在y軸一偶的解析式,由對稱性可求出在y軸另一偶的解析式;
(2)函數(shù)是分段函數(shù),作出圖象,由圖象觀察得到單調(diào)區(qū)間.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一臺機器由于使用時間較長,生產(chǎn)的零件有一些缺損,按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計數(shù)據(jù)如下表所示.
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 16 | 14 | 12 | 8 |
每小時生產(chǎn)有缺損零件數(shù)y(個) | 11 | 9 | 8 | 5 |
(1)作出散點圖;
(2)如果y與x線性相關(guān),求出回歸直線方程;
(3)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺損的零件最多為10個,那么機器的運轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題: ①定義在R上的函數(shù)f(x)滿足f(2)>f(1),則f(x)一定不是R上的減函數(shù);
②用反證法證明命題“若實數(shù)a,b,滿足a2+b2=0,則a,b都為0”時,“假設(shè)命題的結(jié)論不成立”的敘述是“假設(shè)a,b都不為0”.
③把函數(shù)y=sin(2x+ )的圖象向右平移 個單位長度,所得到的圖象的函數(shù)解析式為y=sin2x.
④“a=0”是“函數(shù)f(x)=x3+ax2(x∈R)為奇函數(shù)”的充分不必要條件.
其中所有正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A、B兩個不同點.
(1)求橢圓的標準方程以及m的取值范圍;
(2)求證直線MA,MB與x軸始終圍成一個等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點.
(1)求證:MN⊥CD;
(2)若∠PDA=45°,求證:MN⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在 上的函數(shù)滿足 ,當 時, .
(1)求證: 為奇函數(shù);
(2)求證: 為 上的增函數(shù);
(3)解關(guān)于 的不等式: (其中 且 為常數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,a為正常數(shù).
(1)若f(x)=lnx+φ(x),且 ,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若g(x)=|lnx|+φ(x),且對任意x1 , x2∈(0,2],x1≠x2 , 都有 ,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織學(xué)生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為[20,40),[40,60),[60,80),[80,100],若低于60分的人數(shù)是15人,則該班的學(xué)生人數(shù)是( )
A.45
B.50
C.55
D.60
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com