【題目】在平面直角坐標系內(nèi),已知點,圓的方程為,點是圓上任意一點,線段的垂直平分線和直線相交于點.
(1)當點在圓上運動時,求點的軌跡方程;
(2)過點能否作一條直線,與點的軌跡交于兩點,且點為線段的中點?若存在,求出直線的方程;若不存在,請說明理由.
【答案】(1);(2)能,.
【解析】
(1)由題意,.由橢圓的定義可得的軌跡方程;
(2)當直線的斜率不存在時,不符合題意. 當直線的斜率存在時,設(shè)直線的方程為,代入的軌跡方程. 設(shè)點,由點為線段的中點,可得,可求,即求直線的方程.
(1)連接,由題意,.
又點在圓內(nèi),.
根據(jù)橢圓的定義,點的軌跡是以為焦點,4為實軸長的橢圓.
其中,,,
所以的軌跡方程為.
(2)易知當直線的斜率不存在時,不符合題意.
設(shè)經(jīng)過點的直線的方程為,即
把代入軌跡方程,
得
設(shè)點,則,解得
此時方程為,方程根的判別式為,所以方程有實數(shù)解.
所以直線的方程為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是( )
A. 從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;
B. 2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;
C. 2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番 ;
D. 為了預(yù)測該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據(jù)該模型預(yù)測該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計劃,收集了近個月廣告投入量(單位:萬元)和收益(單位:萬元)的數(shù)據(jù)如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②分別進行擬合,得到相應(yīng)的回歸方程并進行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計量的值:
(Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個模型?并說明理由;
(Ⅱ)殘差絕對值大于的數(shù)據(jù)被認為是異常數(shù)據(jù),需要剔除:
(。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程
(ⅱ)若廣告投入量時,該模型收益的預(yù)報值是多少?
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線C:(a>0,b>0)的漸近線方程為y=±x,右頂點為(1,0).
(1)求雙曲線C的方程;
(2)已知直線y=x+m與雙曲線C交于不同的兩點A,B,且線段AB的中點為,當x0≠0時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知高中學生的數(shù)學成績與物理成績具有線性相關(guān)關(guān)系,在一次考試中某班7名學生的數(shù)學成績與物理成績?nèi)缦卤恚?/span>
數(shù)學成績 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理成績 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(1)求這7名學生的數(shù)學成績的極差和物理成績的平均數(shù);
(2)求物理成績對數(shù)學成績的線性回歸方程;若某位學生的數(shù)學成績?yōu)?/span>110分,試預(yù)測他的物理成績是多少?
下列公式與數(shù)據(jù)可供參考:
用最小二乘法求線性回歸方程的系數(shù)公式:,;
,,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種新產(chǎn)品投放市場一段時間后,經(jīng)過調(diào)研獲得了時間(天數(shù))與銷售單價(元)的一組數(shù)據(jù),且做了一定的數(shù)據(jù)處理(如表),并作出了散點圖(如圖).
1.63 | 37.8 | 0.89 | 5.15 | 0.92 | 18.40 |
表中.
(1)根據(jù)散點圖判斷,與哪一個更適合作價格關(guān)于時間的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程.
(3)若該產(chǎn)品的日銷售量(件)與時間的函數(shù)關(guān)系為,求該產(chǎn)品投放市場第幾天的銷售額最高?最高為多少元?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線L:(為參數(shù)),曲線(為參數(shù))
(Ⅰ)設(shè)與相交于兩點,求;
(Ⅱ)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設(shè)點是曲線上的一個動點,求它到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三角形ABC中,,AC=1,以B為直角頂點作等腰直角三角形BCD(A、D在BC兩側(cè)),當∠BAC變化時,線段AD的長度最大值為._______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com