設點M(x,y)到直線x=4的距離與它到定點(2,0)的距離之比為,并記點M的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點(2,0)作直線l與曲線C相交于A、B兩點,問C上是否存在點P,使得=+成立?若存在,求出直線l的方程;若不存在,說明理由.
【答案】分析:(Ⅰ)由題意利用兩點間的距離公式可得:,整理即可.
(Ⅱ)設A(x1,y1),B(x2,y2),由題意知l的斜率一定不為0,故不妨設l:x=my+2.代入C的方程并整理得到根與系數(shù)的關系;假設存在點P,使成立?點P的坐標(x1+x2,y1+y2)滿足橢圓的方程.又A、B在橢圓上,即滿足橢圓的方程.可得x1x2+2y1y2+4=0,代入解得m,即可得到點P的坐標.
解答:解:(Ⅰ)由題意可得:,整理得C:
(Ⅱ)設A(x1,y1),B(x2,y2),由題意知l的斜率一定不為0,故不妨設l:x=my+2.
代入C的方程,并整理得(m2+2)y2+4my-4=0,顯然△>0.
由韋達定理有:,①
假設存在點P,使成立,則其充要條件為:
點P的坐標為(x1+x2,y1+y2),點P在橢圓上,即
整理得
又A、B在橢圓上,即,
故x1x2+2y1y2+4=0        ②
將x1x2=(my1+2)(my2+2)=m2y1y2+2m(y1+y2)+4及①代入②解得m2=2.
=2,即點P.     
所以,存在點P,使得
這時直線l的方程為
點評:本題考查了橢圓的標準方程及其性質、直線與橢圓相交問題轉化為方程聯(lián)立得到根與系數(shù)的關系、向量的運算、兩點間的距離公式等基本知識與基本技能,考查了分類討論的思想方法、推理能力與計算能力..
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設點M(x,y)到直線x=4的距離與它到定點(1,0)的距離之比為2,并記點M的軌跡曲線為C.
(I)求曲線C的方程;
(II)設過定點(0,2)的直線l與曲線C交于不同的兩點E,F(xiàn),且∠EOF=90°(其中O為坐標原點),求直線l的斜率k的值;
(III)設A(2,0),B(0,
3
)是曲線C的兩個頂點,直線y=mx(x>0)與線段AB相交于點D,與橢圓相交于E,F(xiàn)兩點,求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•許昌一模)設點M(x,y)到直線x=4的距離與它到定點(2,0)的距離之比為
2
,并記點M的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點(2,0)作直線l與曲線C相交于A、B兩點,問C上是否存在點P,使得
OP
=
OA
+
OB
成立?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濟寧二模)設點P(x,y)到直線x=2的距離與它到定點(1,0)的距離之比為
2
,并記點P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設M(-2,0)的,過點M的直線l與曲線C相交于E,F(xiàn)兩點,當線段EF的中點落在由四點C1(-1,0),C2(1,0),B1(0,-1),B2(0,1)構成的四邊形內(不包括邊界)時,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年河南省普通高中高考適應性測試數(shù)學試卷(文科)(解析版) 題型:解答題

設點M(x,y)到直線x=4的距離與它到定點(1,0)的距離之比為2,并記點M的軌跡曲線為C.
(I)求曲線C的方程;
(II)設過定點(0,2)的直線l與曲線C交于不同的兩點E,F(xiàn),且∠EOF=90°(其中O為坐標原點),求直線l的斜率k的值;
(III)設A(2,0),B(0,)是曲線C的兩個頂點,直線y=mx(x>0)與線段AB相交于點D,與橢圓相交于E,F(xiàn)兩點,求四邊形AEBF面積的最大值.

查看答案和解析>>

同步練習冊答案