精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在菱形中, 相交于點, 平面,

(I)求證: 平面;

(II)當直線與平面所成的角為時,求二面角的余弦角.

【答案】(I)見解析;(II)

【解析】試題分析:I根據是菱形可得根據線面垂直的性質可得,從而根據線面垂直的判定定理可得結論;(II軸,以軸,以軸,建立空間直角坐標系,分別求出平面與平面的一個法向量,根據空間向量夾角余弦公式,可得結果.

試題解析:(I)平面

(II)取的中點為,以為坐標原點,以軸,以軸,以軸,建立空間直角坐標系,則,設平面的法向量

,設平面的法向量

,設平面的法向量二面角的余弦值為

【方法點晴】本題主要考查線面垂直的判定與性質及利用空間向量求二面角的大小,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當的空間直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】數列{an}是等差數列,若 <﹣1,且它的前n項和Sn有最大值,那么當Sn取的最小正值時,n=(
A.11
B.17
C.19
D.21

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直線l⊥平面α,垂足為O,已知△ABC中,∠ABC為直角,AB=2,BC=1,該直角三角形做符合以下條件的自由運動:(1)A∈l,(2)B∈α.則C、O兩點間的最大距離為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠利用輻射對食品進行滅菌消毒,現準備在該廠附近建一職工宿舍,并對宿舍進行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關.若建造宿舍的所有費用p(萬元)和宿舍與工廠的距離x(km)的關系為:p= (0≤x≤8),若距離為1km時,宿舍建造費用為100萬元.為了交通方便,工廠與宿舍之間還要修一條道路,已知購置修路設備需5萬元,鋪設路面每公里成本為6萬元,設f(x)為建造宿舍與修路費用之和.
(1)求f(x)的表達式,并寫出其定義域;
(2)宿舍應建在離工廠多遠處,可使總費用f(x)最小,并求最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據題意解答
(1)已知函數f(x)= +9x,若x>0,求f(x)的最小值及此時的x值.
(2)解不等式(x+2)(3﹣x)≥0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線,拋物線, 有公共的焦點, 在第一象限的公共點為,直線的傾斜角為,且,則關于雙曲線的離心率的說法正確的是()

A. 僅有兩個不同的離心率 B. 僅有兩個不同的離心率 C. 僅有一個離心率 D. 僅有一個離心率

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠要建造一個長方體無蓋貯水池,其容積為6400m3 , 深為4m,如果池底每1m2的造價為300元,池壁每1m2的造價為240元,問怎樣設計水池能使總造價最低,最低總造價是多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設命題p:x∈R,都有ax2>﹣ax﹣1(a≠0)恒成立;命題q:圓x2+y2=a2與圓(x+3)2+(y﹣4)2=4外離.如果命題“p∨q”為真命題,“p∧q”為假命題,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拋擲一枚骰子,當它每次落地時,向上一面的點數稱為該次拋擲的點數,可隨機出現1到6點中的任一個結果.連續(xù)拋擲兩次,第一次拋擲的點數記為a,第二次拋擲的點數記為b.
(1)求直線ax+by=0與直線x+2y+1=0平行的概率;
(2)求長度依次為a,b,2的三條線段能構成三角形的概率.

查看答案和解析>>

同步練習冊答案