【題目】閱讀下面材料:

根據(jù)兩角和與差的正弦公式,有

------

------

+------

代入

)類(lèi)比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:

;

)若的三個(gè)內(nèi)角滿(mǎn)足,試判斷的形狀.

【答案】1)根據(jù)兩角和差的余弦公式可以得到結(jié)論,

2為直角三角形

【解析】試題分析:解法一:()因?yàn)?/span>,

, 2

-. 3

,

代入. 6

()由二倍角公式, 可化為

, 8

. 9

設(shè)的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為,

由正弦定理可得. 11

根據(jù)勾股定理的逆定理知為直角三角形. 12

解法二:(Ⅰ)同解法一.

()利用()中的結(jié)論和二倍角公式, 可化為

8

因?yàn)?/span>A,B,C的內(nèi)角,所以,

所以.

又因?yàn)?/span>,所以,

所以.

從而. 10

又因?yàn)?/span>,所以,即.

所以為直角三角形. 12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市上年度電價(jià)為0.80元/千瓦時(shí),年用電量為千瓦時(shí).本年度計(jì)劃將電價(jià)降到0.55元/千瓦時(shí)~0.7元/千瓦時(shí)之間,而居民用戶(hù)期望電價(jià)為0.40元/千瓦時(shí)(該市電力成本價(jià)為0.30元/千瓦時(shí)),經(jīng)測(cè)算,下調(diào)電價(jià)后,該城市新增用電量與實(shí)際電價(jià)和用戶(hù)期望電價(jià)之差成反比,比例系數(shù)為.試問(wèn)當(dāng)?shù)仉妰r(jià)最低為多少元/千瓦時(shí),可保證電力部門(mén)的收益比上年度至少增加20%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和記為Sn , a1=2,an+1=Sn+2(n∈N*).
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y=f(x)(x∈R)是偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x.
(1)求f(x)的解析式;
(2)若不等式f(x)≥mx在1≤x≤2時(shí)都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱,底面為等邊三角形 .

求三棱錐的體積;

在線(xiàn)段上尋找一點(diǎn)使得請(qǐng)說(shuō)明作法和理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

1)判斷函數(shù)的奇偶性;

2)求證:函數(shù)為單調(diào)增函數(shù);

3)求滿(mǎn)足的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在區(qū)間上的值域.

(1)求的值;

(2)若不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),某市面向全市征召義務(wù)宣傳志愿者.從符合條件的500名志愿者中隨機(jī)抽取100名志愿者,其年齡頻率分布直方圖如圖所示,

(1)求圖中 的值并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在 歲的人數(shù);
(2)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取20名參加中心廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@20名中采用簡(jiǎn)單隨機(jī)抽樣方法選取3名志愿者擔(dān)任主要負(fù)責(zé)人.記這3名志愿者中“年齡低于35歲”的人數(shù)為 ,求 的分布列及均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: 的左、右焦點(diǎn)分別為F1、F2 , 離心率 ,P為橢圓E上的任意一點(diǎn)(不含長(zhǎng)軸端點(diǎn)),且△PF1F2面積的最大值為1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)已知直x﹣y+m=0與橢圓E交于不同的兩點(diǎn)A,B,且線(xiàn)AB的中點(diǎn)不在圓 內(nèi),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案