【題目】小張、小李、小華、小明四人玩輪流投擲一枚標準色子的游戲.若有一人投到的數(shù)最小,且無人與他并列,則判他獲勝;若投出最小數(shù)的人多于一個,則將沒投出最小數(shù)的人先淘汰,再讓剩下的人重新做一輪游戲,這樣不斷地進行下去,直到某個人勝出為止.已知第一個投擲色子的小張投到了數(shù)3.則他獲勝的概率是______.

【答案】

【解析】

考慮第一輪次中可能出現(xiàn)的四種情形.

(1)小張獲勝.這種概率是.

(2)小張與另外某一人打成平局.這種概率是

故形成此情形且小張最終獲勝的概率是

(注意該游戲永不停止地進行下去的概率是0,下同).

(3)小張與另外某兩個人打成平局,這種概率是,

故形成此情形且小張最終獲勝的概率是.

(4)所有人均打成平局.這種概率是

故形成此情形且小張最終獲勝的概率是.

綜上,小張在游戲中獲勝的概率為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐,且分別是棱的中點.

(Ⅰ)求證:

(Ⅱ)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在股票市場上,投資者常根據(jù)股價每股的價格走勢圖來操作,股民老張在研究某只股票時,發(fā)現(xiàn)其在平面直角坐標系內(nèi)的走勢圖有如下特點:每日股價與時間的關(guān)系在ABC段可近似地用函數(shù)的圖象從最高點A到最低點C的一段來描述如圖,并且從C點到今天的D點在底部橫盤整理,今天也出現(xiàn)了明顯的底部結(jié)束信號.老張預(yù)測這只股票未來一段時間的走勢圖會如圖中虛線DEF段所示,且DEF段與ABC段關(guān)于直線l對稱,點B,D的坐標分別是

請你幫老張確定a,的值,并寫出ABC段的函數(shù)解析式;

如果老張預(yù)測準確,且今天買入該只股票,那么買入多少天后股價至少是買入價的兩倍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次籃球投籃測試中,記分規(guī)則如下(滿分為分):①每人可投籃次,每投中一次記分;②若連續(xù)兩次投中加分,連續(xù)三次投中加分,連續(xù)四次投中加分,以此類推,…,七次都投中加.假設(shè)某同學每次投中的概率為,各次投籃相互獨立,則:(1)該同學在測試中得分的概率為______;(2)該同學在測試中得分的概率為______..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201912月份,我國湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴重的可導致肺炎甚至危及生命.為了增強居民防護意識,增加居民防護知識,某居委會利用網(wǎng)絡(luò)舉辦社區(qū)線上預(yù)防新冠肺炎知識答題比賽,所有居民都參與了防護知識網(wǎng)上答卷,最終甲、乙兩人得分最高進入決賽,該社區(qū)設(shè)計了一個決賽方案:①甲、乙兩人各自從個問題中隨機抽.已知這個問題中,甲能正確回答其中的個,而乙能正確回答每個問題的概率均為,甲、乙兩人對每個問題的回答相互獨立、互不影響;②答對題目個數(shù)多的人獲勝,若兩人答對題目數(shù)相同,則由乙再從剩下的道題中選一道作答,答對則判乙勝,答錯則判甲勝.

1)求甲、乙兩人共答對個問題的概率;

2)試判斷甲、乙誰更有可能獲勝?并說明理由;

3)求乙答對題目數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次數(shù)學會議上,任意兩位數(shù)學家要么是朋友,要么是陌生人在進餐期間,每位數(shù)學家在兩個大餐廳中的其中一個就餐,每位數(shù)學家所在的餐廳中包含偶數(shù)個他或她的朋友證明數(shù)學家能被分到兩個餐廳中的不同分法的數(shù)目是2的正整數(shù)次幕即形如,其中,是某個正整數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為某一整系數(shù)多項式的根,則稱為“代數(shù)數(shù)”.否則,稱為“超越數(shù)”,證明:

(1)可數(shù)個可數(shù)集的并為可數(shù)集;

(2)存在超越數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學計劃在一年級開設(shè)冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調(diào)查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.

(1)完成列聯(lián)表,并回答能否有的把握認為“對冰球是否有興趣與性別有關(guān)”?

有興趣

沒興趣

合計

55

合計

(2)已知在被調(diào)查的女生中有5名數(shù)學系的學生,其中3名對冰球有興趣,現(xiàn)在從這5名學生中隨機抽取3人,求至少有2人對冰球有興趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線過點,其參數(shù)方程為為參數(shù),),以為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

同步練習冊答案