精英家教網 > 高中數學 > 題目詳情
求過點(0,2)的直線被橢圓x2+2y2=2所截弦的中點的軌跡方程.
分析:設直線方程為y=kx+2,把它代入x2+2y2=2,得(2k2+1)x2+8kx+6=0,由此入手可以求出所截弦的中點的軌跡方程.
解答:解:設直線方程為y=kx+2,
把它代入x2+2y2=2,
整理得(2k2+1)x2+8kx+6=0.
要使直線和橢圓有兩個不同交點,則△>0,即k<-
6
2
或k>
6
2

設直線與橢圓兩個交點為A(x1,y1)、B(x2,y2),中點坐標為C(x,y),則
x=
x1+x2
2
=
-4k
2k2+1
,
y=
-4k2
2k2+1
+2=
2
2k2+1

(k<-
6
2
或k>
6
2
),
從參數方程x=
-4k
2k2+1
,y=
2
2k2+1

消去k得x2+2(y-1)2=2,
且|x|<
6
2
,0<y<
1
2
點評:本題考查圓錐曲線的基本知識,解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知動點P與直x=4的距離等于它到定點F(1,0)的距離的2倍,
(1)求動點P的軌跡C的方程;
(2)點M(1,1)在所求軌跡內,且過點M的直線與曲線C交于A、B,當M是線段AB中點時,求直線AB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)離心率為
3
2
,且過P(
6
,
2
2
).
(1)求橢圓E的方程;
(2)已知直線l過點M(-
1
2
,0),且與開口朝上,頂點在原點的拋物線C切于第二象限的一點N,直  線l與橢圓E交于A,B兩點,與y軸交與D點,若
AB
=λ
AN
,
BD
BN
,且λ+μ=
5
2
,求拋物線C的標準方程.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年安徽省皖南八校高三第一次聯考理科數學試卷 題型:解答題

(本小題滿分12分)已知橢圓過點A(a,0),B(0,b)的直

 

線傾斜角為,原點到該直線的距離為.

 

(1)求橢圓的方程;

(2)斜率小于零的直線過點D(1,0)與橢圓交于M,N兩點,若求直線MN的方程;

(3)是否存在實數k,使直線交橢圓于P、Q兩點,以PQ為直徑的圓過點D(1,0)?若存在,求出k的值;若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數學 來源:高考真題 題型:解答題

已知拋物線C:y2=4x的焦點為F,過點K(-1,0)的直l與C相交于A、B兩點,點A關于x軸的對稱點為D。 (1)證明:點F在直線BD上;
(2)設=,求△BDK的內切圓M的方程。

查看答案和解析>>

同步練習冊答案