【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,且直線l經(jīng)過曲線C的左焦點F.
(1)求直線l的普通方程;
(2)設(shè)曲線C的內(nèi)接矩形的周長為L,求L的最大值.
【答案】(1)x+2y+1=0(2)
【解析】
(1)由極坐標(biāo)化直角坐標(biāo)的公式可得到曲線C的普通方程,消去參數(shù)t可得到直線普通方程,再代入F點坐標(biāo)可得到直線方程;(2)橢圓C的內(nèi)接矩形在第一象限的頂點為(,sinθ)內(nèi)接矩形的周長為,化一求最值即可.
(1)因為曲線C的極坐標(biāo)方程為,即ρ2+ρ2sin2θ=2.
將ρ2=x2+y2,ρsinθ=y(tǒng),代入上式,得
x2+2y2=2,即.
所以曲線C的直角坐標(biāo)方程為.
于是c2=a2-b2=1,所以F(-1,0).
由消去參數(shù)t,
得直線l的普通方程為.
將F(-1,0)代入直線方程得.
所以直線l的普通方程為x+2y+1=0.
(2)設(shè)橢圓C的內(nèi)接矩形在第一象限的頂點為(,sinθ)(),
所以橢圓C的內(nèi)接矩形的周長為(其中),故橢圓C的內(nèi)接矩形的周長的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市調(diào)研考試后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”;
參考公式與臨界值表:.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和滿足:,,,其中為實數(shù),為正整數(shù).
(Ⅰ)證明:對任意的實數(shù),數(shù)列不是等比數(shù)列;
(Ⅱ)證明:當(dāng)時,數(shù)列是等比數(shù)列;
(Ⅲ)設(shè)為數(shù)列的前項和,是否存在實數(shù),使得對任意正整數(shù),都有?若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,∠BAC=120°,AC=AB=2,AA1=3.
(1)求三棱柱ABC-A1B1C1的體積;
(2)若M是棱BC的一個靠近點C的三等分點,求證:AM⊥平面ABB1A1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,且直線l經(jīng)過曲線C的左焦點F.
(1)求直線l的普通方程;
(2)設(shè)曲線C的內(nèi)接矩形的周長為L,求L的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個不同的單位向量與之間滿足關(guān)系:,其中.
(1)若,求的解析式;
(2)能否和垂直?能否和平行?若不能,則說明理由;若能,則求出對應(yīng)的k值;
(3)求與夾角的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱錐的高為6,內(nèi)切球(與四個面都相切)表面積為,則其底面邊長為( )
A. 18 B. 12 C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com