(本小題滿分12分)某工廠用萬元錢購買了一臺新機器,運輸安裝費用千元,每年投保、動力消耗的費用也為千元,每年的保養(yǎng)、維修、更換易損零件的費用逐年增加,第一年為千元,第二年為千元,第三年為千元,依此類推,即每年增加千元.
(Ⅰ)求使用年后,保養(yǎng)、維修、更換易損零件的累計費用S(千元)關于的表達式;
(Ⅱ)問這臺機器最佳使用年限是多少年?并求出年平均費用(單位:千元)的最小值.(最佳使用年限是指使年平均費用最小的時間,年平均費用=(購入機器費用+運輸安裝費用+每年投保、動力消耗的費用+保養(yǎng)、維修、更換易損零件的累計費用)÷機器使用的年數(shù) )

(Ⅰ)(Ⅱ)最佳年限是12年,平均費用為15.5千元

解析試題分析:(Ⅰ)由題易知其費用成等差數(shù)列,                                   ……2分
所以                                         ……5分
(Ⅱ)設使用年的年平均費用為,則  
                                           ……10分
當且僅當時,取等號,取最小值 ,                                   ……11分
故最佳年限是12年,平均費用為15.5千元.                                  ……12分
考點:本小題主要考查應用等差數(shù)列和基本不等式解決實際應用題,考查學生的理解能力和從實際問題中抽象出數(shù)學模型的能力.
點評:根據(jù)實際問題抽象出函數(shù)的解析式后,只需利用基本不等式就可求得函數(shù)的最值,但是一定要注意在定義域(使實際問題有意義的自變量的取值范圍)內(nèi)求解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)若是偶函數(shù),求的值。
(2)設,,求的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)

(1)
(2),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如下左圖,已知底角為450的等腰三角形ABC,底邊AB的長為2,當一條垂直于AB的直線L從左至右移動時,直線L把三角形ABC分成兩部分,令AD=,
(1) 試寫出左邊部分的面積與x的函數(shù)解析式;
(2) 在給出的坐標系中畫出函數(shù)的大致圖象。
   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;
(2)若對任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

判斷并利用定義證明f(x)=在(-∞,0)上的增減性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)
已知函數(shù)是奇函數(shù),且
(1)求,的值;
(2)用定義證明在區(qū)間上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(每小題6分,共12分)求下列函數(shù)的定義域:
(1) 
(2) .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)用分段函數(shù)的形式表示該函數(shù);
(2)在右邊所給的坐標系中畫出該函數(shù)的圖象;
(3)寫出該函數(shù)的定義域、值域、奇偶性、單調(diào)區(qū)間(不要求證明).

查看答案和解析>>

同步練習冊答案