【題目】在單位圓O:x2+y2=1上任取一點P(x,y),圓O與x軸正向的交點是A,設將OA繞原點O旋轉到OP所成的角為θ,記x,y關于θ的表達式分別為x=f(θ),y=g(θ),則下列說法正確的是( 。
A.x=f(θ)是偶函數,y=g(θ)是奇函數
B.x=f(θ)在為增函數,y=g(θ)在為減函數
C.f(θ)+g(θ)≥1對于恒成立
D.函數t=2f(θ)+g(2θ)的最大值為
科目:高中數學 來源: 題型:
【題目】已知圓,動圓與圓外切,且與直線相切,該動圓圓心的軌跡為曲線.
(1)求曲線的方程
(2)過點的直線與拋物線相交于兩點,拋物線在點A的切線與交于點N,求面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數在[1,2]上有且僅有3個零點,其圖象關于點和直線x對稱,給出下列結論:
①;
②函數f(x)在[0,1]上有且僅有3個極值點;
③函數f(x)在上單調遞增;
④函數f(x)的最小正周期是2.
其中所有正確結論的編號是( )
A.②③B.①④C.②③④D.①②
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】人口平均預期壽命是綜合反映人們健康水平的基本指標.年第六次全國人口普查資料表明,隨著我國社會經濟的快速發(fā)展,人民生活水平的不斷提高以及醫(yī)療衛(wèi)生保障體系的逐步完善,我國人口平均預期壽命繼續(xù)延長,國民整體健康水平有較大幅度的提高.下圖體現了我國平均預期壽命變化情況,依據此圖,下列結論錯誤的是( )
A.男性的平均預期壽命逐漸延長
B.女性的平均預期壽命逐漸延長
C.男性的平均預期壽命延長幅度略高于女性
D.女性的平均預期壽命延長幅度略高于男性
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線是過點的動直線,當與圓相切時,同時也和拋物線相切.
(1)求拋物線的方程;
(2)直線與拋物線交于不同的兩點,與圓交于不同的兩點A、B,面積為,面積為,當時,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四面體ABCD中,△ABC和△BCD均是邊長為1的等邊三角形,已知四面體ABCD的四個頂點都在同一球面上,且AD是該球的直徑,則四面體ABCD的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“未來肯定是非接觸的,無感支付的方式將成為主流,這有助于降低交互門檻”.云從科技聯合創(chuàng)始人姚志強告訴南方日報記者.相對于主流支付方式二維碼支付,刷臉支付更加便利,以前出門一部手機解決所有,而現在連手機都不需要了,畢竟,手機支付還需要攜帶手機,打開二維碼也需要時間和手機信號.刷臉支付將會替代手機,成為新的支付方式.某地從大型超市門口隨機抽取50名顧客進行了調查,得到了如表列聯表:
(1)請將上面的列聯表補充完整,并判斷是否有的把握認為使用刷臉支付與性別有關?
(2)從參加調查且使用刷臉支付的顧客中隨機抽取2人參加抽獎活動,抽獎活動規(guī)則如下:“一等獎”中獎概率為0.25,獎品為10元購物券張(,且),“二等獎”中獎概率0.25,獎品為10元購物券兩張,“三等獎”中獎概率0.5,獎品為10元購物券一張,每位顧客是否中獎相互獨立,記參與抽獎的兩位顧客中獎購物券金額總和為元,若要使的均值不低于50元,求的最小值.
附:,其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的極坐標方程為,直線的參數方程為(為參數).
(Ⅰ)求曲線的參數方程與直線的普通方程;
(Ⅱ)設點為曲線上的動點,點和點為直線上的點,且.求面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,長軸長為4,且過點.
(1)求橢圓C的方程;
(2)過的直線l交橢圓C于兩點,過A作x軸的垂線交橢圓C與另一點Q(Q不與重合).設的外心為G,求證為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com