在三棱錐P-ABC中,PA⊥平面ABC,∠BAC=90°,D、E、F分別是棱AB、BC、CP的中點(diǎn),AB=AC=1,PA=2,則直線(xiàn)PA與平面DEF所成角的正弦值為( )
A. B. C. D.
C
解析試題分析:以A為坐標(biāo)原點(diǎn),建立如圖空間直角坐標(biāo)系易知:
A(0,0,0),B(1,0,0),P(0,0,2),
,
,
設(shè)是平面DEF的一個(gè)法向量,
則即,取x=1, 則 ,
設(shè)PA與平面 DEF所成的角為,
則 sinθ=。
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系,角的計(jì)算。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用向量則簡(jiǎn)化了證明過(guò)程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,在直棱柱ABC—A1B1C1中,AC=BC=2,∠ACB=90º,AA1=2,E,F(xiàn)分別為AB、CB中點(diǎn),過(guò)直線(xiàn)EF作棱柱的截面,若截面與平面ABC所成的二面角的大小為60º,則截面的面積為( ).
A.3或1 B.1 C.4或1 D.3或4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知是平面,是直線(xiàn),給出下列命題,其中正確的命題的個(gè)數(shù)是( )
( 1 )若,則
( 2 )若,則
( 3 )如果是異面直線(xiàn),那么與相交
( 4 )若,且,則且.
A.1 | B.2 | C.3 | D.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,正四棱錐的所有棱長(zhǎng)相等,E為PC的中點(diǎn),則異面直線(xiàn)BE與PA所成角的余弦值是( )
A. | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
在空間中,設(shè)是三條不同的直線(xiàn),是兩個(gè)不同的平面,在下列命題:
①若兩兩相交,則確定一個(gè)平面
②若,且,則
③若,且,則
④若,且,則
其中正確的命題的個(gè)數(shù)是( )
A.0 | B.1 | C.2 | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知、是兩條不同的直線(xiàn),、是兩個(gè)不同的平面,則下列命題中正確的是
A.若,且,則 |
B.若,且,則 |
C.若,且,則 |
D.若,且,則 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè),是兩條不同的直線(xiàn),是一個(gè)平面,則下列命題正確的是( 。
A.若,,則 |
B.若,,則 |
C.若,,則 |
D.若,,則 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com