【題目】已知橢圓的離心率為,且過點(diǎn)

1)求橢圓的方程;

2)過橢圓左焦點(diǎn)的直線與橢圓交于兩點(diǎn),直線過坐標(biāo)原點(diǎn)且直線的斜率互為相反數(shù),直線與橢圓交于兩點(diǎn)且均不與點(diǎn)重合,設(shè)直線的斜率為,直線的斜率為.證明 為定值

【答案】(1);(2)定值為

【解析】試題分析:根據(jù)橢圓的離心率為,且過點(diǎn),結(jié)合性質(zhì) ,列出關(guān)于 、 、的方程組,求出 、 、,即可得結(jié)果;(設(shè),聯(lián)立,消去,,利用斜率公式以及韋達(dá)定理,化簡可得則,所以為定值.

試題解析:(Ⅰ)由題可得,解得.

所以橢圓的方程為.

Ⅱ)由題知直線斜率存在,設(shè).

聯(lián)立,消去,

由題易知恒成立,由韋達(dá)定理得,

因?yàn)?/span>斜率相反且過原點(diǎn),

設(shè), ,

聯(lián)立,

消去,

由題易知恒成立,

由韋達(dá)定理得,

所以為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐的底面為直角梯形,,,,為正三角形.

(1)點(diǎn)為棱上一點(diǎn),若平面,,求實(shí)數(shù)的值;

(2)求點(diǎn)B到平面SAD的距離.

【答案】(1);(2)

【解析】試題分析:(1)由平面,可證,進(jìn)而證得四邊形為平行四邊形,根據(jù),可得

(2)利用等體積法可求點(diǎn)到平面的距離.

試題解析:((1)因?yàn)?/span>平面SDM,

平面ABCD,

平面SDM 平面ABCD=DM,

所以,

因?yàn)?/span>,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點(diǎn).

因?yàn)?/span>,

.

(2)因?yàn)?/span> , ,

所以平面,

又因?yàn)?/span>平面,

所以平面平面

平面平面,

在平面內(nèi)過點(diǎn)直線于點(diǎn),則平面,

中,

因?yàn)?/span>,所以,

又由題知,

所以,

由已知求得,所以,

連接BD,則,

又求得的面積為,

所以由點(diǎn)B 到平面的距離為.

型】解答
結(jié)束】
19

【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒有獎(jiǎng)勵(lì),超過55單的部分每單獎(jiǎng)勵(lì)12元.

(1)請分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;

(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)與天數(shù)滿足以下表格:

日均派送單數(shù)

52

54

56

58

60

頻數(shù)(天)

20

30

20

20

10

回答下列問題:

①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出這100天中甲、乙兩種方案的日薪平均數(shù)及方差;

②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.

(參考數(shù)據(jù): , , , , ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的公比,前項(xiàng)和為,且滿足.,,分別是一個(gè)等差數(shù)列的第1項(xiàng),第2項(xiàng),第5項(xiàng).

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和

(3)若,的前項(xiàng)和為,且對任意的滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線處的切線經(jīng)過點(diǎn).

(1)證明: ;

(2)若當(dāng)時(shí), ,求的取值范圍.

【答案】(1)證明見解析;(2) .

【解析】試題分析:(1先根據(jù)導(dǎo)數(shù)幾何意義得切線斜率為,再根據(jù)切線過點(diǎn),解得導(dǎo)數(shù)可得導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號(hào)變號(hào)規(guī)律可得函數(shù)單調(diào)性,根據(jù)函數(shù)單調(diào)性可得函數(shù)最小值為0,即得結(jié)論,2先化簡不等式為,分離得,再利用導(dǎo)數(shù)求函數(shù)單調(diào)性,利用羅伯特法則求最大值,即得的取值范圍.

試題解析:(1)曲線處的切線為,即

由題意得,解得

所以

從而

因?yàn)楫?dāng)時(shí), ,當(dāng)時(shí), .

所以在區(qū)間上是減函數(shù),區(qū)間上是增函數(shù),

從而.

(2)由題意知,當(dāng)時(shí), ,所以

從而當(dāng)時(shí), ,

由題意知,即,其中

設(shè),其中

設(shè),即,其中

,其中

(1)當(dāng)時(shí),因?yàn)?/span>時(shí), ,所以是增函數(shù)

從而當(dāng)時(shí), ,

所以是增函數(shù),從而.

故當(dāng)時(shí)符合題意.

(2)當(dāng)時(shí),因?yàn)?/span>時(shí),

所以在區(qū)間上是減函數(shù)

從而當(dāng)時(shí),

所以上是減函數(shù),從而

故當(dāng)時(shí)不符合題意.

(3)當(dāng)時(shí),因?yàn)?/span>時(shí), ,所以是減函數(shù)

從而當(dāng)時(shí),

所以是減函數(shù),從而

故當(dāng)時(shí)不符合題意

綜上的取值范圍是.

型】解答
結(jié)束】
22

【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線 .以為極點(diǎn), 軸的非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)射線)與曲線的異于極點(diǎn)的交點(diǎn)為,與曲線的交點(diǎn)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,選項(xiàng)正確的是(

A. 在回歸直線中,變量時(shí),變量的值一定是15

B. 兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)就越接近于1

C. 在殘差圖中,殘差點(diǎn)比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關(guān)

D. 若某商品的銷售量(件)與銷售價(jià)格(元/件)存在線性回歸方程為,當(dāng)銷售價(jià)格為10元時(shí),銷售量為100件左右

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示,則下列判斷正確的是(  )

A. 函數(shù)的圖象關(guān)于點(diǎn)對稱

B. 函數(shù)的圖象關(guān)于直線對稱

C. 函數(shù)的最小正周期為

D. 當(dāng)時(shí),函數(shù)的圖象與直線圍成的封閉圖形面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中, ,且平面, 為棱的中點(diǎn).

(1)求證: ∥平面;

(2)求證:平面平面;

(3)當(dāng)四面體的體積最大時(shí),判斷直線與直線是否垂直,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,的中點(diǎn).

1)若,求向量與向量的夾角的余弦值;

2)若是線段上任意一點(diǎn),且,求的最小值;

3)若點(diǎn)內(nèi)一點(diǎn),且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】m為何值時(shí),.

(1)有且僅有一個(gè)零點(diǎn);

(2)有兩個(gè)零點(diǎn)且均比-1大.

查看答案和解析>>

同步練習(xí)冊答案