【題目】已知極點與直角坐標(biāo)系的原點重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)是ρ=2asinθ,直線l的參數(shù)方程是 (t為參數(shù)).
(1)若a=2,M為直線l與x軸的交點,N是圓C上一動點,求|MN|的最大值;
(2)若直線l被圓C截得的弦長為 ,求a的值.

【答案】
(1)解:直線l的參數(shù)方程是 ,a=2時,化為普通方程: (x﹣2).令y=0,解得x=2,可得M(2,0).圓C的極坐標(biāo)是ρ=2asinθ,即ρ2=4ρsinθ,可得直角坐標(biāo)方程:x2+y2﹣4y=0,即x2+(y﹣2)2=4.

|MC|=2 ,∴|MN|的最大值為2 +2


(2)解:圓C的方程為:x2+(y﹣a)2=a2,直線l的方程為:4x+3y﹣4a=0,

圓心C到直線l的距離d= =

=2 ,解得a=


【解析】(1)直線l的參數(shù)方程是 ,a=2時,化為普通方程: (x﹣2).可得M(2,0).圓C的極坐標(biāo)是ρ=2asinθ,即ρ2=4ρsinθ,利用互化公式可得直角坐標(biāo)方程,求出|MC|=2 ,可得|MN|的最大值為2 +r.(2)圓C的方程為:x2+(y﹣a)2=a2,直線l的方程為:4x+3y﹣4a=0,利用點到直線的距離公式與弦長公式即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1點E,F(xiàn),G分別是DD1 , AB,CC1的中點,則異面直線A1E與GF所成的角是(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計數(shù)據(jù)表:

收入x(萬元)

8.2

8.6

10.0

11.3

11.9

支出y(萬元)

6.2

7.5

8.0

8.5

9.8

根據(jù)上表可得回歸直線方程 ,其中 , = ,據(jù)此估計,該社區(qū)一戶居民年收入為15萬元家庭的年支出為萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀與探究

人教A版《普通高中課程標(biāo)準(zhǔn)實驗教科書 數(shù)學(xué)4(必修)》在第一章的小結(jié)中寫到:

將角放在直角坐標(biāo)系中討論不但使角的表示有了統(tǒng)一的方法,而且使我們能夠借助直角坐標(biāo)系中的單位圓,建立角的變化與單位圓上點的變化之間的對應(yīng)關(guān)系,從而用單位圓上點的縱坐標(biāo)、橫坐標(biāo)來表示圓心角的正弦函數(shù)、余弦函數(shù).因此,正弦函數(shù)、余弦函數(shù)的基本性質(zhì)與圓的幾何性質(zhì)(主要是對稱性)之間存在著非常緊密的聯(lián)系.例如,和單位圓相關(guān)的“勾股定理”與同角三角函數(shù)的基本關(guān)系有內(nèi)在的一致性;單位圓周長為與正弦函數(shù)、余弦函數(shù)的周期為是一致的;圓的各種對稱性與三角函數(shù)的奇偶性、誘導(dǎo)公式等也是一致的等等.因此,三角函數(shù)的研究過程能夠很好地體現(xiàn)數(shù)形結(jié)合思想.

依據(jù)上述材料,利用正切線可以討論研究得出正切函數(shù)的性質(zhì).

比如:由圖1.2-7可知,角的終邊落在四個象限時均存在正切線;角的終邊落在軸上時,其正切線縮為一個點,值為;角的終邊落在軸上時,其正切線不存在;所以正切函數(shù)的定義域是.

(1)請利用單位圓中的正切線研究得出正切函數(shù)的單調(diào)性和奇偶性;

(2)根據(jù)閱讀材料中途1.2-7,若角為銳角,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,

1)若為等邊三角形,且 的中點,求

2)若, , ,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)滿足,且.當(dāng)時, .

(1)求上的解析式;

(2)證明上是減函數(shù);

(3)當(dāng)取何值時,方程上有解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,E、F分別是棱DD1、C1D1的中點.
(Ⅰ)證明:平面ADC1B1⊥平面A1BE;
(Ⅱ)證明:B1F∥平面A1BE;
(Ⅲ)若正方體棱長為1,求四面體A1﹣B1BE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(0,1)的直線與圓x2+y2=4相交于A、B兩點,若 ,則點P的軌跡方程是( )
A.
B.x2+(y﹣1)2=1
C.
D.x2+(y﹣1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A是拋物線M:y2=2px(p>0)與圓C:x2+(y﹣4)2=a2在第一象限的公共點,且點A到拋物線M焦點F的距離為a,若拋物線M上一動點到其準(zhǔn)線與到點C的距離之和的最小值為2a,O為坐標(biāo)原點,則直線OA被圓C所截得的弦長為( )
A.2
B.2
C.
D.

查看答案和解析>>

同步練習(xí)冊答案