將邊長為的正方形和等腰直角三角形按圖拼為新的幾何圖形,中,,連結(jié),若,為中點
(Ⅰ)求與所成角的大小;
(Ⅱ)若為中點,證明:平面;
(Ⅲ)證明:平面平面
(Ⅰ) ;(Ⅱ)參考解析; (Ⅲ)參考解析.
解析試題分析:(Ⅰ) 通過已知條件說明直線AE,AD,AB兩兩垂直,從而建立空間直角坐標(biāo)系,寫出相應(yīng)的點的坐標(biāo)并寫出相應(yīng)的向量.異面直線所成角的問題是轉(zhuǎn)化為兩向量所成角的問題.通過計算向量所成角的余弦值的絕對值得到對應(yīng)的異面直線所成角的余弦值,從而求出異面直線所成的角.(Ⅱ)線面所成的角本題較簡單是通過直線平行于平面內(nèi)的一條直線.直線與平面平行還有一種常用的方法就是,該直線與平面的一條法向量垂直,這種方法常用在平面內(nèi)很難找出一條直線與已知直線平行.(Ⅲ)本小題的平面與平面垂直的判定方法是通過證明AM垂直于平面CBE.又因為直線AM在平面CAM內(nèi),所得到的兩平面垂直.這類題型還有一種方法就是求出兩平面的法向量,證明它們的數(shù)量積為零.本題較容易,當(dāng)然本題不建立坐標(biāo)系同樣好做.立幾知識盡量建立坐標(biāo)系完成,另外線面的關(guān)系可以在解題中幫助我們思路及計算更加清晰.
試題解析:(Ⅰ)解:∵,,
∴,又
∴面
為等腰直角三角形且
∴
兩兩垂直
分別以所在直線為軸,
建立空間直角坐標(biāo)系如圖:
則,
,
∴
∴
∴與所成角的大小為 4分
(Ⅱ) ∵,為中點
∴,而
∴
∴與共線,
面,面
∴平面 8分
Ⅲ)面
面
∴
∴
又為等腰直角三角形且為斜邊中點
∴
∴面
又面
∴平面平面 12分
考點:1.異面直線所成的角.2.線面平行的證明.3.面面垂直的證明.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上任一點.
(Ⅰ)求證:無論E點取在何處恒有;
(Ⅱ)設(shè),當(dāng)平面EDC平面SBC時,求的值;
(Ⅲ)在(Ⅱ)的條件下求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥平面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
三棱錐P?ABC中,PA⊥平面ABC,AB⊥BC。
(1)證明:平面PAB⊥平面PBC;
(2)若PA=,PC與側(cè)面APB所成角的余弦值為,PB與底面ABC成60°角,求二面角B―PC―A的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.
(1)求異面直線B1C1與AC所成角的大;
(2)若該直三棱柱ABC-A1B1C1的體積為,求點A到平面A1BC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐中,底面是直角梯形,,,,,平面,.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)若是的中點,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知三角形與所在平面互相垂直,且,,,點,分別在線段上,沿直線將向上翻折,使與重合.
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成的角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com