【題目】為了嚴格監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,某企業(yè)每天從該生產(chǎn)線上隨機抽取10000個零件,并測量其內徑(單位:.根據(jù)長期生產(chǎn)經(jīng)驗,認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的內徑服從正態(tài)分布.如果加工的零件內徑小于或大于均為不合格品,其余為合格品.

1)假設生產(chǎn)狀態(tài)正常,請估計一天內抽取的10000個零件中不合格品的個數(shù)約為多少;

2)若生產(chǎn)的某件產(chǎn)品為合格品則該件產(chǎn)品盈利;若生產(chǎn)的某件產(chǎn)品為不合格品則該件產(chǎn)品虧損.已知每件產(chǎn)品的利潤(單位:元)與零件的內徑有如下關系:.求該企業(yè)一天從生產(chǎn)線上隨機抽取10000個零件的平均利潤.

附:若隨機變量服從正態(tài)分布,有,.

【答案】126;(2.

【解析】

1)根據(jù)正態(tài)分布的原則,零件的尺寸在之內的概率為,從而可得不合格品的概率為,即可求解.

2)根據(jù)正態(tài)分布的原則,求出對應的概率,再利用均值的計算公式即可求解.

1)抽取的一個零件的尺寸在之內的概率為,

從而抽取一個零件為不合格品的概率為

因此一天內抽取的10000個零件中不合格品的個數(shù)約為:.

2)結合正態(tài)分布曲線和題意可知:

,

,

,

,

故隨機抽取10000個零件的平均利潤:

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】區(qū)塊鏈技術被認為是繼蒸汽機、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術區(qū)塊鏈作為構造信任的機器,將可能徹底改變整個人類社會價值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關數(shù)據(jù),如表

年份

2015

2016

2017

2018

2019

編號

1

2

3

4

5

企業(yè)總數(shù)量y(單位:千個)

2.156

3.727

8.305

24.279

36.224

注:參考數(shù)據(jù)(其中zlny).

附:樣本(xi,yi)(i12,,n)的最小二乘法估計公式為

1)根據(jù)表中數(shù)據(jù)判斷,ya+bxycedx(其中e2.71828…,為自然對數(shù)的底數(shù)),哪一個回歸方程類型適宜預測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結果即可,不必說明理由)

2)根據(jù)(1)的結果,求y關于x的回歸方程(結果精確到小數(shù)點后第三位);

3)為了促進公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進行一次信息化技術比賽,邀請甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場比賽有兩個公司參加,并決出勝負;②每場比賽獲勝的公司與未參加此場比賽的公司進行下一場的比賽;③在比賽中,若有一個公司首先獲勝兩場,則本次比賽結束,該公司就獲得此次信息化比賽的優(yōu)勝公司,已知在每場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,請通過計算說明,哪兩個公司進行首場比賽時,甲公司獲得優(yōu)勝公司的概率最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在邊長為4的菱形中,,于點,將沿折起到的位置,使,如圖2.

(1)求證:平面;

(2)求二面角的余弦值;

(3)判斷在線段上是否存在一點,使平面平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在現(xiàn)代社會中,信號處理是非常關鍵的技術,我們通過每天都在使用的電話或者互聯(lián)網(wǎng)就能感受到,而信號處理背后的“功臣”就是正弦型函數(shù).函數(shù)的圖象就可以近似的模擬某種信號的波形,則下列說法正確的是( )

A.函數(shù)為周期函數(shù),且最小正周期為

B.函數(shù)為奇函數(shù)

C.函數(shù)的圖象關于直線對稱

D.函數(shù)的導函數(shù)的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠預購軟件服務,有如下兩種方案:

方案一:軟件服務公司每日收取工廠60元,對于提供的軟件服務每次10元;

方案二:軟件服務公司每日收取工廠200元,若每日軟件服務不超過15次,不另外收費,若超過15次,超過部分的軟件服務每次收費標準為20元.

(1)設日收費為元,每天軟件服務的次數(shù)為,試寫出兩種方案中的函數(shù)關系式;

(2)該工廠對過去100天的軟件服務的次數(shù)進行了統(tǒng)計,得到如圖所示的條形圖,依據(jù)該統(tǒng)計數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】極坐標系與直角坐標系有相同的長度單位,以原點為極點,以軸正半軸為極軸,曲線的極坐標方程為,曲線的參數(shù)方程為為參數(shù),),射線,,與曲線交于(不包括極點)三點,,

1)求證:;

2)當時,,兩點在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】今年310日湖北武漢某方艙醫(yī)院關門大吉,某省馳援湖北抗疫9名身高各不相同的醫(yī)護人員站成一排合影留念,慶祝圓滿完成抗疫任務,若恰好從中間往兩邊看都依次變低,則身高排第4的醫(yī)護人員和最高的醫(yī)護人員相鄰的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為等比數(shù)列,其前項和為,且滿足,為等差數(shù)列,其前項和為,如圖_____,的圖象經(jīng)過兩個點.

(Ⅰ)求;

(Ⅱ)若存在正整數(shù),使得,求的最小值.從圖①,圖②,圖③中選擇一個適當?shù)臈l件,補充在上面問題中并作答.

查看答案和解析>>

同步練習冊答案