【題目】如圖,在四棱錐中,底面是菱形,側(cè)面底面,,為線段的中點.

1)求證:平面

2)求平面與平面所成銳二面角的余弦值.

【答案】1)證明見解析;(2

【解析】

1)連接,交于點,連接,利用中位線的性質(zhì)可得出,然后利用線面平行的判定定理可證得平面

2)取的中點,連接、,證明出底面,然后以的中點為坐標原點,、分別為軸、軸、軸建立空間直角坐標系,利用空間向量法可求得平面與平面所成銳二面角的余弦值.

1)連接,交于點,連接,

由于底面為菱形,的中點,

中,的中點,,

又因為平面平面,平面

2)取的中點,連接、,

由題意可得,,又側(cè)面底面,即底面.

的中點為坐標原點,、、分別為軸、軸、軸建立如圖所示

的坐標系,則有,,,

,,,

設平面的法向量為

,得,令,則,,

是平面的一個法向量,

同理設平面的法向量為,

,得,令,則,,

是平面的一個法向量,

設平面與平面所成銳二面角為,則.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】階梯水價的原則是;、建機制、促節(jié)約,其中;是指保證至少80%的居民用戶用水價格不變.為響應國家政策,制訂合理的階梯用水價格,某城市采用簡單隨機抽樣的方法分別從郊區(qū)和城區(qū)抽取5戶和20戶居民的年人均用水量進行調(diào)研,得到數(shù)據(jù)如下(單位:噸).

郊區(qū):19 25 28 32 34

城區(qū):18 19 21 22 22 23 23 23 24 25 26 27 28 28 28 29 29 31 35 42

1)在郊區(qū)的這5戶居民中隨機抽取2戶,求其年人均用水量都不超過30噸的概率;

2)設該城市郊區(qū)和城區(qū)的居民戶數(shù)比為15,現(xiàn)將年人均用水量不超過30噸的用戶定義為第一階梯用戶,并保證這一階梯的居民用戶用水價格保持不變,試根據(jù)樣本總體的思想,分析此方案是否符合國家;政策.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】12個朋友每周聚餐一次,每周他們分成三組,每組4人,不同組坐不同的桌子.若要求這些朋友中任意兩個人至少有一次同坐一張桌子,則至少需要周____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是自然數(shù)1,2,…,的一個排列,且滿足對任意,均有

(1)若記為數(shù)在排列中所處位置的序號如排列,).求證對每一個滿足題意的排列,均有成立.

(2)試求滿足題意的排列的個數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線的參數(shù)方程為為參數(shù)),是曲線上的動點,且是線段的中點,點的軌跡為曲線,直線的極坐標方程為,直線與曲線交于兩點.

1)求曲線的普通方程和直線的直角坐標方程;

2)寫出過點的直線的參數(shù)方程,并求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,將四棱錐S-ABCD的每一個頂點染上一種顏色,并使同一條棱上的兩端異色,如果只有5種色可供使用,則不同的染色方法種數(shù)為(

A.240B.360C.420D.960

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是正整數(shù),且.(1)試求出最大的正整數(shù),使得存在各邊長都是不大于的正整數(shù),且任意兩邊之差(大減。┒疾恍∮趉的三角形;(2)試求出所有的正整數(shù),使得(1)中所述的對應于最大的正整數(shù)的三角形有且只有一個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)定義域為,部分對應值如表,的導函數(shù)的圖象如圖所示. 下列關(guān)于函數(shù)的結(jié)論正確的有(

A.函數(shù)的極大值點有

B.函數(shù)在是減函數(shù)

C.時,的最大值是,則的最大值為4

D.時,函數(shù)個零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,若橢圓經(jīng)過點,且的面積為.

(1)求橢圓的標準方程;

(2)設斜率為的直線與以原點為圓心,半徑為的圓交于,兩點,與橢圓交于,兩點,且,當取得最小值時,求直線的方程.

查看答案和解析>>

同步練習冊答案