【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值來(lái)衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,記其質(zhì)量指標(biāo)值為,當(dāng)時(shí),產(chǎn)品為一級(jí)品;當(dāng)時(shí),產(chǎn)品為二級(jí)品,當(dāng)時(shí),產(chǎn)品為三級(jí)品,現(xiàn)用兩種新配方(分別稱(chēng)為配方和配方)做實(shí)驗(yàn),各生產(chǎn)了件這種產(chǎn)品,并測(cè)量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面的試驗(yàn)結(jié)果 :(以下均視頻率為概率)
配方的頻數(shù)分配表:
指標(biāo)值分組 | ||||
頻數(shù) |
配方的頻數(shù)分配表:
指標(biāo)值分組 | |||||
頻數(shù) |
(1)若從配方產(chǎn)品中有放回地隨機(jī)抽取件,記“抽出的配方產(chǎn)品中至少件二級(jí)品”為事件,求事件發(fā)生的概率;
(2)若兩種新產(chǎn)品的利潤(rùn)率與質(zhì)量指標(biāo)滿(mǎn)足如下關(guān)系:,其中,從長(zhǎng)期來(lái)看,投資哪種配方的產(chǎn)品平均利潤(rùn)率較大?
【答案】(1);(2)從長(zhǎng)期來(lái)看,投資A配方產(chǎn)品的平均利潤(rùn)率較大。
【解析】
⑴先求出抽中二級(jí)品的概率,由此能求得答案
⑵分別求出A配方產(chǎn)品的利潤(rùn)分布列和,B配方產(chǎn)品的利潤(rùn)分布列和,再根據(jù),即可得到結(jié)論
(1)由題意知,從B配方產(chǎn)品中隨機(jī)抽取一次抽中二級(jí)品的概率為,
則沒(méi)有抽中二級(jí)品的概率為,
所以.
(2)A配方產(chǎn)品的利潤(rùn)分布列為
y | t | 5t2 |
p | 0.6 | 0.4 |
所以,
B配方產(chǎn)品的利潤(rùn)分布列為
y | t | 5t2 | t2 |
p | 0.55 | 0.4 | 0.05 |
所以,
因?yàn)?/span>,
所以
所以從長(zhǎng)期來(lái)看,投資A配方產(chǎn)品的平均利潤(rùn)率較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列滿(mǎn)足,,
(1)求數(shù)列的通項(xiàng)公式;
(2)求的最大項(xiàng)的值;
(3)數(shù)列滿(mǎn)足,問(wèn)是否存在正整數(shù)k,使得成等差數(shù)列?若存在,求出k和m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“珠算之父”程大位是我國(guó)明代著名的數(shù)學(xué)家,他的應(yīng)用巨著《算法統(tǒng)綜》中有一首“竹筒容米”問(wèn)題:“家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)四升五,上梢四節(jié)三升八,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識(shí)求得中間兩節(jié)竹的容積為
A. 2.2升B. 2.3升
C. 2.4升D. 2.5升
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知P是曲線上的點(diǎn),Q是曲線上的點(diǎn),曲線與曲線關(guān)于直線對(duì)稱(chēng),M為線段PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),則的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在四棱錐中,底面是邊長(zhǎng)為4的正方形,是正三角形,平面平面,分別是的中點(diǎn).
(1)求證:平面平面;
(2)若是線段上一點(diǎn),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面四邊形ABCD中,,,,(如圖1),若將沿對(duì)角線BD折疊,使(如圖2).請(qǐng)?jiān)趫D2中解答下列問(wèn)題.
(1)證明:;
(2)求三棱錐的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線和曲線的極坐標(biāo)方程;
(2)已知射線(),將射線順時(shí)針?lè)较蛐D(zhuǎn)得到:,且射線與曲線交于兩點(diǎn),射線與曲線交于兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(x+)+sin(x﹣)+cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,f(A)=,△ABC的面積為,AB=,求BC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線,的直角坐標(biāo)方程;
(2)判斷曲線,是否相交,若相交,請(qǐng)求出交點(diǎn)間的距離;若不相交,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com