【題目】已知直線l與橢圓交于A,B兩點,點P是橢圓C上異于A,B的一個動點,點Q在直線AB上,滿足(為坐標原點)

1)求點Q的軌跡方程;

2)求四邊形OAPB的面積S的最大值.

【答案】1;(2 最大值12

【解析】

1)由條件用Q點坐標表示出P點坐標,再代入橢圓方程即可得到Q點的軌跡方程;

2)由Q的軌跡與直線l有交點,求出km的不等關(guān)系,由,求出的表達式,然后換元,利用km的不等關(guān)系求出新的自變量的范圍,從而可求面積的最大值.

1)設(shè)

有:,

又點P在橢圓C上,則,即,

所以點Q的軌跡方程:

2)設(shè),,由,

消去y可得:,

,,

又直線l與橢圓有公共點;

所以有:,

,即,

原點到直線l的距離為,又,則,

設(shè),則,

時,即時,有最大值4,

S有最大值12

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】x[0,1]時,下列關(guān)于函數(shù)y=的圖象與的圖象交點個數(shù)說法正確的是( 。

A. 時,有兩個交點B. 時,沒有交點

C. 時,有且只有一個交點D. 時,有兩個交點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,分別為的中點,.

(1)求證:;

(2)若直線和平面所成角的正弦值等于,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為α為參數(shù)),將C上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>3倍,得曲線C1.以O為極點,x軸正半軸為極軸建立極坐標系.

1)求C1的極坐標方程

2)設(shè)MNC1上兩點,若OMON,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方形的邊長為2, 的中點,以點為圓心, 長為半徑作圓,點是該圓上的任一點,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是( 。

A.2017年第一季度GDP增速由高到低排位第5的是浙江。

B.與去年同期相比,2017年第一季度的GDP總量實現(xiàn)了增長.

C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1

D.去年同期河南省的GDP總量不超過4000億元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線年產(chǎn)量為件,該生產(chǎn)線分為兩段,流水線第一段生產(chǎn)的半成品的質(zhì)量指標會影響第二段生產(chǎn)成品的等級,具體見下表:

第一段生產(chǎn)的半成品質(zhì)量指標

第二段生產(chǎn)的成品為一等品概率

0.2

0.4

0.6

第二段生產(chǎn)的成品為二等品概率

0.3

0.3

0.3

第二段生產(chǎn)的成品為三等品概率

0.5

0.3

0.1

從第一道生產(chǎn)工序抽樣調(diào)查了件,得到頻率分布直方圖如圖:

若生產(chǎn)一件一等品、二等品、三等品的利潤分別是元、元、元.

(Ⅰ)以各組的中間值估計為該組半成品的質(zhì)量指標,估算流水線第一段生產(chǎn)的半成品質(zhì)量指標的平均值;

(Ⅱ)將頻率估計為概率,試估算一條流水線一年能為該公司創(chuàng)造的利潤;

(Ⅲ)現(xiàn)在市面上有一種設(shè)備可以安裝到流水線第一段,價格是萬元,使用壽命是年,安裝這種設(shè)備后,流水線第一段半成品的質(zhì)量指標服從正態(tài)分布,且不影響產(chǎn)量.請你幫該公司作出決策,是否要購買該設(shè)備?說明理由.

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實數(shù)x滿足x24ax+3a20a0),命題q:實數(shù)x滿足x25x+60

1)若a1,且pq為真命題,求實數(shù)x的取值范圍;

2)若pq的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中a為常數(shù),且曲線在其與y軸的交點處的切線記為,曲線在其與x軸的交點處的切線記為,且

之間的距離;

若存在x使不等式成立,求實數(shù)m的取值范圍;

對于函數(shù)的公共定義域中的任意實數(shù),稱的值為兩函數(shù)在處的偏差求證:函數(shù)在其公共定義域內(nèi)的所有偏差都大于2.

查看答案和解析>>

同步練習冊答案