若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿(mǎn)足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整數(shù),且1≤i≤n),就稱(chēng)該數(shù)列為“對(duì)稱(chēng)數(shù)列”.
(1)已知數(shù)列{bn}是項(xiàng)數(shù)為7的對(duì)稱(chēng)數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫(xiě)出{bn}的每一項(xiàng)
(2)已知{cn}是項(xiàng)數(shù)為2k-1(k≥1)的對(duì)稱(chēng)數(shù)列,且ck,ck+1…c2k-1構(gòu)成首項(xiàng)為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項(xiàng)和為S2k-1,則當(dāng)k為何值時(shí),S2k-1取到最大值?最大值為多少?
(3)對(duì)于給定的正整數(shù)m>1,試寫(xiě)出所有項(xiàng)數(shù)不超過(guò)2m的對(duì)稱(chēng)數(shù)列,使得1,2,22…2m-1成為數(shù)列中的連續(xù)項(xiàng);當(dāng)m>1500時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和S2008
【答案】分析:(1)設(shè){bn}的公差為d,由b1,b2,b3,b4成等差數(shù)列求解d從而求得數(shù)列{bn},
(2)先得到S2k-1=-4(k-13)2+4×132-50,用二次函數(shù)求解,
(3)按照1,2,22…2m-1是數(shù)列中的連續(xù)項(xiàng)按照定義,用組合的方式寫(xiě)出來(lái)所有可能的數(shù)列,再按其數(shù)列的規(guī)律求前n項(xiàng)和取符合條件的一組即可.
解答:解:(1)設(shè){bn}的公差為d,則b4=b1+3d=2+3d=11,解得d=3,∴?數(shù)列{bn}為2,5,8,11,8,5,2.
(2)S2k-1=c1+c2++ck-1+ck+ck+1++c2k-1=2(ck+ck+1++c2k-1)-ck,
S2k-1=-4(k-13)2+4×132-50,
∴?當(dāng)k=13時(shí),S2k-1取得最大值.S2k-1的最大值為626.
(3)所有可能的“對(duì)稱(chēng)數(shù)列”是:
①1,2,22,,2m-2,2m-1,2m-2,,22,2,1;
②1,2,22,,2m-2,2m-1,2m-1,2m-2,,22,2,1;
③2m-1,2m-2,,22,2,1,2,22,,2m-2,2m-1;
④2m-1,2m-2,,22,2,1,1,2,22,,2m-2,2m-1.
對(duì)于①,當(dāng)m≥2008時(shí),S2008=1+2+22++22007=22008-1.
當(dāng)1500<m≤2007時(shí),S2008=1+2++2m-2+2m-1+2m-2++22m-2009=2m-1+2m-1-22m-2009=2m+2m-1-22m-2009-1.
對(duì)于②,當(dāng)m≥2008時(shí),S2008=22008-1.
當(dāng)1500<m≤2007時(shí),S2008=2m+1-22m-2008-1.
對(duì)于③,當(dāng)m≥2008時(shí),S2008=2m-2m-2008.
當(dāng)1500<m≤2007時(shí),S2008=2m+22009-m-3.
對(duì)于④,當(dāng)m≥2008時(shí),S2008=2m-2m-2008.
當(dāng)1500<m≤2007時(shí),S2008=2m+22008-m-2.
點(diǎn)評(píng):本題一道新定義題,這樣的題做法是嚴(yán)格按照定義要求,將其轉(zhuǎn)化為已知的知識(shí)和方法去解決,本題涉及到等差數(shù)列的通項(xiàng)公式,等比數(shù)列求和,構(gòu)造數(shù)列等知識(shí).