【題目】某教研機構(gòu)隨機抽取某校20個班級,調(diào)查各班關(guān)注漢字聽寫大賽的學(xué)生人數(shù),根據(jù)所得數(shù)據(jù)的莖葉圖,以組距為5將數(shù)據(jù)分組成時,所作的頻率分布直方圖如圖所示,則原始莖葉圖可能是( )
A. B.
C. D.
【答案】A
【解析】由頻率分布直方圖可知:第一組的頻數(shù)為20×0.01×5=1個,
[0,5)的頻數(shù)為20×0.01×5=1個,
[5,10)的頻數(shù)為20×0.01×5=1個,
[10,15)頻數(shù)為20×0.04×5=4個,
[15,20)頻數(shù)為20×0.02×5=2個,
[20,25)頻數(shù)為20×0.04×5=4個,
[25,30)頻數(shù)為20×0.03×5=3個,
[30,35)頻數(shù)為20×0.03×5=3個,
[35,40]頻數(shù)為20×0.02×5=2個,
則對應(yīng)的莖葉圖為A,
本題選擇A選項.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.
如圖,在陽馬中,側(cè)棱底面,且, 為中點,點在上,且平面,連接, .
(Ⅰ)證明: 平面;
(Ⅱ)試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;
(Ⅲ)已知, ,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在兩個正實數(shù),使得等式成立(其中為自然對數(shù)的底數(shù)),則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選做題】本題包括A、B、C、D四小題,請選定其中兩小題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩小題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
如圖, 分別與圓相切于點, , 經(jīng)過圓心,且,求證: .
B.[選修4-2:矩陣與變換]
在平面直角坐標(biāo)系中,已知點, , , ,先將正方形繞原點逆時針旋轉(zhuǎn),再將所得圖形的縱坐標(biāo)壓縮為原來的一半、橫坐標(biāo)不變,求連續(xù)兩次變換所對應(yīng)的矩陣.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)).現(xiàn)以為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,求曲線的極坐標(biāo)方程.
D.[選修4-5:不等式選講]
已知為互不相等的正實數(shù),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】河南多地遭遇跨年霾,很多學(xué)校調(diào)整元旦放假時間,提前放假讓學(xué)生們在家里躲霾,鄭州市根據(jù)《鄭州市人民政府辦公廳關(guān)于將重污染天氣黃色預(yù)警升級為紅色預(yù)警的通知》.自12月29日12時將黃色預(yù)警升級為紅色預(yù)警,12月30日0時啟動I級響應(yīng),明確要求:“幼兒園、中小學(xué)等教育機構(gòu)停課,停課不停學(xué)”,學(xué)生和家長對停課這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學(xué)習(xí)不贊成的.某調(diào)查機構(gòu)為了了解公眾對該舉措的態(tài)度,隨機調(diào)查采訪了50人,將調(diào)查情況整理匯總成下表:
年齡(歲) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 6 | 9 | 6 | 3 | 4 |
(1)請補全被調(diào)查人員年齡的頻率分布直方圖;
(2)若從年齡在的被調(diào)查者中分別隨機選取一人進行追蹤調(diào)查,求這兩人都贊成“停課”這一舉措的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與的圖象在點處有相同的切線.
(Ⅰ)若函數(shù)與的圖象有兩個交點,求實數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個極值點, ,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,且方程 無實數(shù)根,下列命題:
(1)方程 一定有實數(shù)根;
(2)若 ,則不等式 對一切實數(shù) 都成立;
(3)若 ,則必存在實數(shù) ,使 ;
(4)若 ,則不等式 對一切實數(shù) 都成立.
其中,正確命題的序號是________________.(把你認(rèn)為正確的命題的所有序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅?zhǔn)悄媳背瘯r代的偉大科學(xué)家,5世紀(jì)末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等.現(xiàn)有以下四個幾何體:圖①是從圓柱中挖出一個圓錐所得的幾何體;圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個幾何體為( 。
A. ①② B. ①③ C. ②④ D. ①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com