【題目】如果函數(shù)的定義域?yàn)?/span>,且存在實(shí)常數(shù)a,使得對(duì)于定義域內(nèi)任意x,都成立,則稱此函數(shù)具有性質(zhì)

1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有a的值的集合;若不具有“性質(zhì)”,請(qǐng)說(shuō)明理由;

2)已知函數(shù)具有“性質(zhì)”,且當(dāng)時(shí),,求函數(shù)在區(qū)間上的值域;

3)已知函數(shù)具有“性質(zhì)”,又具有“性質(zhì)”,且當(dāng)時(shí),,若函數(shù)的圖像與直線2017個(gè)公共點(diǎn),求實(shí)數(shù)p的值.

【答案】(1)函數(shù)具有“性質(zhì)”,所有a的值的集合為(2)答案不唯一,具體見(jiàn)解析(3)

【解析】

1)根據(jù)題意可知,故而,

2)由新定義可推出為偶函數(shù),從而求出上的解析式,討論的關(guān)系判斷的單調(diào)性得出的最值;

3)根據(jù)新定義可知為周期為2的偶函數(shù),作出的函數(shù)圖象,根據(jù)函數(shù)圖象得出的值.

解:(1)假設(shè)具有“性質(zhì)”,則恒成立,

函數(shù)具有“性質(zhì)”,且所有的值的集合為,

2)因?yàn)楹瘮?shù)具有“性質(zhì)”,所以恒成立,

是偶函數(shù).

設(shè),則,

①當(dāng)時(shí),函數(shù),上遞增,值域?yàn)?/span>

②當(dāng)時(shí),函數(shù),上遞減,在上遞增,

,,值域?yàn)?/span>

③當(dāng)時(shí),,,值域?yàn)?/span>

時(shí),函數(shù)上遞減,值域?yàn)?/span>,

3既具有“性質(zhì)”,即,函數(shù)偶函數(shù),

具有“2)性質(zhì)”,即

函數(shù)是以2為周期的函數(shù).

作出函數(shù)的圖象如圖所示:

由圖象可知,當(dāng)時(shí),函數(shù)與直線交于點(diǎn),,即有無(wú)數(shù)個(gè)交點(diǎn),不合題意.

當(dāng)時(shí),在區(qū)間上,函數(shù)1008個(gè)周期,要使函數(shù)的圖象與直線2017個(gè)交點(diǎn),

則直線在每個(gè)周期內(nèi)都有2個(gè)交點(diǎn),且第2017個(gè)交點(diǎn)恰好為,所以

同理,當(dāng)時(shí),

綜上,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)直線軸的交點(diǎn)為,經(jīng)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)談?wù)摵瘮?shù)的零點(diǎn)個(gè)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列滿足,等比數(shù)列的首項(xiàng)為2,公比為.

1)若,問(wèn)等于數(shù)列中的第幾項(xiàng)?

2)若,數(shù)列的前項(xiàng)和分別記為的最大值為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方體ABCD-A1B1C1D1中(如圖),AD=AA1=1,AB=2,點(diǎn)E是棱AB的中點(diǎn).

(1)求異面直線AD1EC所成角的大小;

(2)《九章算術(shù)》中,將四個(gè)面都是直角三角形的四面體稱為鱉臑,試問(wèn)四面體D1CDE是否為鱉臑?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等腰中,,,分別為,的中點(diǎn),的中點(diǎn),在線段上,且。將沿折起,使點(diǎn)的位置(如圖2所示),且。

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, 滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)的值為__________

【答案】

【解析】由題可知若取得最大值的最優(yōu)解不唯一則必平行于可行域的某一邊界,如圖:要Z最大則直線與y軸的截距最大即可,當(dāng)a<0時(shí),則平行AC直線即可故a=-2,當(dāng)a>0時(shí),則直線平行AB即可,故a=1

點(diǎn)睛:線性規(guī)劃為?碱}型,解決此題務(wù)必要理解最優(yōu)解個(gè)數(shù)為無(wú)數(shù)個(gè)時(shí)的條件是什么,然后根據(jù)幾何關(guān)系求解即可

型】填空
結(jié)束】
16

【題目】《數(shù)書九章》三斜求積術(shù):“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實(shí),一為從隅,開(kāi)平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術(shù)”即方法.以, , , 分別表示三角形的面積,大斜,中斜,小斜; , , 分別為對(duì)應(yīng)的大斜,中斜,小斜上的高;則 .若在, , ,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體的棱長(zhǎng)為,點(diǎn)為棱的中點(diǎn).下列結(jié)論:①線段上存在點(diǎn),使得平面;②線段上存在點(diǎn),使得平面;③平面把正方體分成兩部分,較小部分的體積為,其中所有正確的序號(hào)是(

A.B.C.①③D.①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案