【題目】已知(x+ n展開式的二項式系數(shù)之和為256
(1)求n;
(2)若展開式中常數(shù)項為 ,求m的值;
(3)若展開式中系數(shù)最大項只有第6項和第7項,求m的值.

【答案】
(1)解:∵(x+ n展開式的二項式系數(shù)之和為256,∴2n=256,解得n=8
(2)解: 的通項公式:Tr+1= =mr x82r,令8﹣2r=0,解得r=4.

∴m4 = ,解得m=


(3)解: 的通項公式:Tr+1= =mr x82r

∵展開式中系數(shù)最大項只有第6項和第7項,∴m≠0,

T6=m5 x2,T7=m6 x4,令m5 =m6 ,

解得m=2


【解析】(1)(x+ n展開式的二項式系數(shù)之和為256,可得2n=256,解得n即可得出.(2) 的通項公式:Tr+1= =mr x82r , 令8﹣2r=0,解得r即可得出;(3) 的通項公式:Tr+1= =mr x82r , 由于展開式中系數(shù)最大項只有第6項和第7項,可得m≠0,T6=m5 x2 , T7=m6 x4 , 令系數(shù)相等解出即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:x2=8y.AB是拋物線C的動弦,且AB過F(0,2),分別以A,B為切點作軌跡C的切線,設兩切線交點為Q,證明:AQ⊥BQ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx= ,其中a0

)若a=1,求曲線y=fx)在點(2,f2))處的切線方程;

)若在區(qū)間上,fx)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市的教育主管部門對所管轄的學校進行年終督導評估,為了解某學校師生對學校教學管理的滿意度,分別從教師和不同年級的同學中隨機抽取若干師生,進行評分(滿分100分),繪制如下頻率分布直方圖(分組區(qū)間為, , , , ),并將分數(shù)從低到高分為四個等級:

滿意度評分

滿意度等級

不滿意

基本滿意

滿意

非常滿意

已知滿意度等級為基本滿意的有340人.

(1)求表中的值及不滿意的人數(shù);

(2)在等級為不滿意的師生中,老師占,現(xiàn)從該等級師生中按分層抽樣抽取12人了解不滿意的原因,并從中抽取3人擔任整改督導員,記為老師整改督導員的人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)),為自然對數(shù)的底數(shù),若曲線上存在點,使得,則的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】兩千多年前,古希臘畢達哥拉斯學派的數(shù)學家曾經在沙灘上研究數(shù)學問題.他們在沙灘上畫點或用小石子表示數(shù),按照點或小石子能排列的形狀對數(shù)進行分類.如下圖中實心點的個數(shù)5,9,14,20,…為梯形數(shù).根據(jù)圖形的構成,記此數(shù)列的第2013項為a2013 , 則a2013﹣5=(
A.2019×2013
B.2019×2012
C.1006×2013
D.2019×1006

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】綜合題。
(1)證明:Cnm+Cnm1=Cn+1m
(2)證明:Cn1+2Cn2+3Cn3+…+nCnn=n2n1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在面積為1的正方形ABCD內部隨機取一點P,則△PAB的面積大于等于 的概率是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場銷售某種品牌的空調器,每周周初購進一定數(shù)量的空調器,商場每銷售一臺空調器可獲利500元,若供大于求,則每臺多余的空調器需交保管費100元;若供不應求,則可從其他商店調劑供應,此時每臺空調器僅獲利潤200元. (Ⅰ)若該商場周初購進20臺空調器,求當周的利潤(單位:元)關于當周需求量n(單位:臺,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該商場記錄了去年夏天(共10周)空調器需求量n(單位:臺),整理得表:

周需求量n

18

19

20

21

22

頻數(shù)

1

2

3

3

1

以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進20臺空調器,X表示當周的利潤(單位:元),求X的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案