有甲、乙兩個(gè)班,進(jìn)行數(shù)學(xué)考試,按學(xué)生考試及格與不及格統(tǒng)計(jì)成績后,得到如下的列聯(lián)表
 
根據(jù)表中數(shù)據(jù),你有多大把握認(rèn)為成績及格與班級(jí)有關(guān)?
附表: 


0.050
0.010
0.001
k
3.841
6.635
10.828

沒有理由認(rèn)為成績合格與班級(jí)有關(guān)

解析試題分析:解:由列聯(lián)表中的數(shù)據(jù),得

所以,我們沒有理由認(rèn)為成績合格與班級(jí)有關(guān)。
考點(diǎn):獨(dú)立性檢驗(yàn)
點(diǎn)評(píng):主要是考查了獨(dú)立性檢驗(yàn)的思想的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客采用的付款期數(shù)的分布列為


1
2
3
4
5

0.4
0.2
0.2
0.1
0.1
商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為250元;分4期或5期付款,其利潤為300元.表示經(jīng)銷一件該商品的利潤.
(Ⅰ)求事件:“購買該商品的3位顧客中,至少有1位采用1期付款”的概率
(Ⅱ)求的分布列及期望與方差D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為普及高中生安全逃生知識(shí)與安全防護(hù)能力,某學(xué)校高一年級(jí)舉辦了高中生安全知識(shí)與安全逃生能力競賽. 該競賽分為預(yù)賽和決賽兩個(gè)階段,預(yù)賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.

分?jǐn)?shù)(分?jǐn)?shù)段)
頻數(shù)(人數(shù))
頻率
[60,70)


[70,80)


[80,90)


 [90,100)


合  計(jì)


(Ⅰ)求出上表中的的值;
(Ⅱ)按規(guī)定,預(yù)賽成績不低于分的選手參加決賽,參加決賽的選手按照抽簽方式?jīng)Q定出場順序.已知高一·二班有甲、乙兩名同學(xué)取得決賽資格.
①求決賽出場的順序中,甲不在第一位、乙不在最后一位的概率;
②記高一·二班在決賽中進(jìn)入前三名的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的6個(gè)頂點(diǎn),在頂點(diǎn)取自A,B,C,D,E,F(xiàn)的所有三角形中,隨機(jī)(等可能)取一個(gè)三角形.設(shè)隨機(jī)變量X為取出三角形的面積.
(Ⅰ) 求概率P ( X=);
(Ⅱ) 求數(shù)學(xué)期望E ( X ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋中裝有大小相同的2個(gè)白球和3個(gè)黑球.
(1)采取放回抽樣方式,從中依次摸出兩個(gè)球,求兩球顏色不同的概率;
(2)采取不放回抽樣方式,從中依次摸出兩個(gè)球,記為摸出兩球中白球的個(gè)數(shù),
的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

市民李生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)的.同一條道路去程與回程是否堵車互不影響.假設(shè)李生早上需要先開車送小孩去丙地小學(xué),再返回經(jīng)甲地趕去乙地上班,

(1)寫出李生可能走的所有路線;(比如DDA表示走D路從甲到丙,再走D路回到甲,然后走A路到達(dá)乙);
(2)假設(shè)從丙地到甲地時(shí)若選擇走道路D會(huì)遇到擁堵,并且從甲地到乙地時(shí)若選擇走道路B也會(huì)遇到擁堵,其它方向均通暢,但李生不知道相關(guān)信息,那么從出發(fā)到回到上班地沒有遇到過擁堵的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙、丙三人獨(dú)立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為、,且他們是否破譯出密碼互不影響,若三人中只有甲破譯出密碼的概率為
(1)求的值.
(2)設(shè)甲、乙、丙三人中破譯出密碼的人數(shù)為,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


由于某高中建設(shè)了新校區(qū),為了交通方便要用三輛通勤車從老校區(qū)把教師接到新校區(qū).已知從新校區(qū)到老校區(qū)有兩條公路,汽車走一號(hào)公路堵車的概率為,不堵車的概率為;汽車走二號(hào)公路堵車的概率為p,不堵車的概率為1-p,若甲、乙兩輛汽車走一號(hào)公路,丙汽車由于其他原因走二號(hào)公路,且三輛車是否堵車相互之間沒有影響.
(Ⅰ)若三輛汽車中恰有一輛汽車被堵的概率為,求走二號(hào)公路堵車的概率;
(Ⅱ)在(Ⅰ)的條件下,求三輛汽車中被堵車輛的個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

兩枚質(zhì)量均勻的正方體骰子,六個(gè)面上分別標(biāo)有數(shù)字1、2、3、4、5、6,拋擲兩枚骰子.記兩枚骰子朝上的面上的數(shù)字分別為p,q,若把p,q分別作為點(diǎn)A的橫坐標(biāo)和縱坐標(biāo),
(1)用列表法或樹狀圖表示出點(diǎn)A(p,q)所有可能出現(xiàn)的結(jié)果;
(2)求點(diǎn)A(p,q)在函數(shù)y=x-1的圖象上的概率.

查看答案和解析>>

同步練習(xí)冊答案