【題目】已知函數(shù)

1)設(shè)時,求的導(dǎo)函數(shù)的遞增區(qū)間;

2)設(shè) ,求的單調(diào)區(qū)間;

3)若 恒成立,求的取值范圍.

【答案】1

2)當(dāng)時,的單調(diào)遞減區(qū)間為,無單調(diào)遞增區(qū)間,

當(dāng)時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為

3

【解析】

1)將代入函數(shù),求出,即,再求出,進而求出的單調(diào)遞增區(qū)間;

2)對求導(dǎo),討論的取值范圍,求出的單調(diào)區(qū)間;

3)分離參數(shù),不等式 恒成立轉(zhuǎn)化為恒成立,構(gòu)造新的函數(shù),求出的最大值,從而求得的取值范圍.

解:(1

時,,

,

,得,

的單調(diào)遞增區(qū)間為

2

,

,則恒成立,單調(diào)遞減;

,令,得,單調(diào)遞增,

,得單調(diào)遞減.

綜上所述,

當(dāng)時,的單調(diào)遞減區(qū)間為,無單調(diào)遞增區(qū)間;

當(dāng)時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;

3恒成立可轉(zhuǎn)化為恒成立,

設(shè),

則當(dāng)時,單調(diào)遞增,

當(dāng)時,單調(diào)遞減,

,即的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓

(Ⅰ)若圓C與x軸相切,求圓C的方程;

(Ⅱ)已知,圓與x軸相交于兩點(點在點的左側(cè)).過點任作一條直線與圓相交于兩點A,B.問:是否存在實數(shù)a,使得=?若存在,求出實數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)存在極大值,且極大值為1,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知8件不同的產(chǎn)品中有3件次品,現(xiàn)對它們一一進行測試,直至找到所有次品.

1)若在第5次測試時找到最后一件次品,則共有多少種不同的測試方法?

2)若至多測試5次就能找到所有次品,則共有多少種不同的測試方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前n項和為,已知,

1)求的值;

2)求數(shù)列的通項公式;

3)令,證明:對任意,均有(要求不得使用數(shù)學(xué)歸終法).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),求證:

1在區(qū)間存在唯一極大值點;

2上有且僅有2個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認為質(zhì)量不過關(guān),再由另外2位行家進行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨立.

1)求一件手工藝品質(zhì)量為B級的概率;

2)若一件手工藝品質(zhì)量為A,BC級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100.

①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;

②記1件手工藝品的利潤為X元,求X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項和是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

中,內(nèi)角對邊的邊長分別是,已知,

的面積等于,求

,求的面積.

查看答案和解析>>

同步練習(xí)冊答案