【題目】黨的十九大報告明確指出要堅決打贏脫貧攻堅戰(zhàn),讓貧困人口和貧困地區(qū)同全國一道進入全面小康社會,要動員全黨全國全社會力量,堅持精準扶貧、精準脫貧,確保到2020年我國現(xiàn)行標準下農(nóng)村貧困人口實現(xiàn)脫貧.現(xiàn)有扶貧工作組到某山區(qū)貧困村實施脫貧工作.經(jīng)摸底排查,該村現(xiàn)有貧困農(nóng)戶100戶,他們均從事水果種植,2017年底該村平均每戶年純收入為1萬元,扶貧工作組一方面請有關(guān)專家對水果進行品種改良,提高產(chǎn)量;另一方面,抽出部分農(nóng)戶從事水果包裝、銷售工作,其戶數(shù)必須小于種植的戶數(shù).從2018年初開始,若該村抽出戶(,)從事水果包裝、銷售.經(jīng)測算,剩下從事水果種植農(nóng)戶的年純收入每戶平均比上一年提高,而從事包裝銷售農(nóng)戶的年純收入每戶平均為萬元.(參考數(shù)據(jù):,,,).
(1)至2018年底,該村每戶年均純收入能否達到1.32萬元?若能,請求出從事包裝、銷售的戶數(shù);若不能,請說明理由;
(2)至2020年底,為使從事水果種植農(nóng)戶能實現(xiàn)脫貧(即每戶(水果種植農(nóng)戶)年均純收入不低于1.6萬元),至少要抽出多少戶從事包裝、銷售工作?
【答案】(1)從事包裝、銷售的戶數(shù)為16,20,24,28,32,36戶時能達到每戶平均純收入1.32萬元.(2)16戶
【解析】
(1)假設(shè)至2018年底每戶年均純收入能達到1.32萬元,由已知可得每戶的平均收入為:,令,解一元二次不等式即可求解.
(2)由已知可得至2020年底,種植戶每戶平均收入為,,解不等式即可.
解:(1)假設(shè)至2018年底每戶年均純收入能達到1.32萬元,由已知可得:
每戶的平均收入為:,
令,
化簡,得,解得:,
因為,, 且,可得:,
所以,當從事包裝、銷售的戶數(shù)為16,20,24,28,32,36戶時能達到每戶平均純收入1.32萬元.
(2)由已知可得:至2020年底,種植戶每戶平均收入為,
令,得:,
由題所給數(shù)據(jù),知:,所以,,
所以,的最小值為4,,
即至少抽出16戶從事包裝、銷售工作.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為,直線l的參數(shù)方程為(t為參數(shù),).
(1)寫出直線l的普通方程和曲線C的直角坐標方程;
(2)若直線l與曲線C交于A,B兩點,直線l的傾斜角,P點坐標為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,且離心率為.
(1)求橢圓的方程;
(2)設(shè)橢圓在左、右頂點分別為、,左焦點為,過的直線與交于、兩點(和均不在坐標軸上),直線、分別與軸交于點、,直線、分別與軸交于點、,求證:為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,平面,,,且,,分別為棱,,的中點.
(1)證明:直線與共面;并求其所成角的余弦值;
(2)在棱上是否存在點,使得平面,若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點、分別是橢圓的上、下頂點,以為直徑作圓,直線與橢圓交于、兩點,與圓交于、兩點.
(1)若直線的傾斜角為,求(為坐標原點)的面積;
(2)若點、分別在直線、上,且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是偶函數(shù).
(1)求的值;
(2)證明:對任意實數(shù),函數(shù)的圖象與直線最多只有一個交點;
(3)設(shè)若函數(shù)的圖象有且只有一個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E:()的左右焦點分別是,離心率,點在橢圓E上.
(1)求橢圓E的方程;
(2)如圖,分別過作兩條互相垂直的弦AC與BD,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表是某城市在2019年1月份至10月份各月最低溫與最高溫(℃)的數(shù)據(jù)表,已知該城市的各月最低溫與最高溫具有相關(guān)關(guān)系,根據(jù)該表,則下列結(jié)論錯誤的是( )
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
最高溫 | 5 | 9 | 9 | 11 | 17 | 24 | 27 | 30 | 31 | 21 |
最低溫 | 1 | 7 | 17 | 19 | 23 | 25 | 10 |
A.最低溫與最高溫為正相關(guān)
B.每月最低溫與最高溫的平均值在前8個月逐月增加
C.月溫差(最高溫減最低溫)的最大值出現(xiàn)在1月
D.1至4月溫差(最高溫減最低溫)相對于7至10月,波動性更大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com