曲線y=-x3+x2在點(1,0)處的切線的傾斜角為( 。
A.45°B.60°C.120°D.135°
∵y=-x3+x2,
∴y′=-3x2+2x,
x=1時,y′=-1.
∵tan135°=-1,
∴曲線y=-x3+x2在點(1,0)處的切線的傾斜角為135°.
故選D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)中,x=0是極值點的函數(shù)是( 。
A.y=-x3B.y=cos2xC.y=tanx-xD.y=
1
x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知曲線y=x2上一點P處的切線與直線2x-y+1=0平行,則點P的坐標為( 。
A.(-1,1)B.(1,1)C.(2,4)D.(3,9)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設函數(shù)f(x)=ax3+bx2+cx+d的圖象在x=0處的切線方程24x+y-12=0則c+2d=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)y=
x3
3
-x2+1(0<x<2)的圖象上任意點處切線的傾斜角為α,則α的最小值是( 。
A.
π
4
B.
π
6
C.
6
D.
4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+alnx.
(I)當a=-2時,求函數(shù)f(x)的極值;
(II)若g(x)=f(x)+
2
x
在[1,+∞)上是單調(diào)增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+cx+d(a≠0)是R上的奇函數(shù),當x=1時,f(x)取得極值-2.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當x∈[-3,3]時,f(x)<m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3處取得極值.
(1)求f(x)的解析式;
(2)求f(x)在點A(1,16)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知曲線f(x)=ex在點(x0,f(x0))處的切線經(jīng)過點(0,0),則x0的值為( 。
A.
1
e
B.1C.eD.10

查看答案和解析>>

同步練習冊答案