【題目】將正整數(shù)對作如下分組
則第100個數(shù)對為________________.
【答案】(9,6)
【解析】
根據題意,分析可得所給的數(shù)對的規(guī)律,據此分析可得第100個數(shù)對為第14行的第9個數(shù),結合分析的規(guī)律可得答案.
根據題意,
第一行有1個數(shù)對,數(shù)對中兩個數(shù)的和為2,
第二行有2個數(shù)對,數(shù)對中兩個數(shù)的和為3,數(shù)對中第一個數(shù)由1變化到2,第二個數(shù)由2變化到1,
第三行有3個數(shù)對,數(shù)對中兩個數(shù)的和為4,數(shù)對中第一個數(shù)由1變化到3,第二個數(shù)由3變化到1,
第四行有4個數(shù)對,數(shù)對中兩個數(shù)的和為5,數(shù)對中第一個數(shù)由1變化到4,第二個數(shù)由4變化到1,
……
第行有個數(shù)對,數(shù)對中兩個數(shù)的和為,數(shù)對中第一個數(shù)由1變化到,第二個數(shù)由變化到1,
前13行一共有1+2+3+……+13=91個數(shù),
則第100個數(shù)對為第14行的第9個數(shù),則第100個數(shù)對為(9,6),
故答案為:(9,6)
科目:高中數(shù)學 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,貴陽一中“保護飲用水源地”課題研究小組的同學們對紅楓湖、百花湖、阿哈水庫、花溪水庫、北郊水庫5處水源地進行了樣本采集并送環(huán)保部門進行水質檢測.已知5處水源地中有1處被某污染物污染,需要通過檢測水源樣本來確定被污染的水源地現(xiàn)有三個檢測方案:
方案甲:對5個樣本逐個檢測,直到能確定被污染的水源地為止.
方案乙:先任取1個樣本進行檢測,若檢測到污染物,則檢測結束;若未檢測到污染物,則在剩余4個樣本中任取2個,并將這2個樣本取部分混合在一起檢測,若檢測到污染物,則再在這2個樣本中任取一個檢測,否則在剩余2個未檢測樣本中任取一個檢測.
方案丙:先任取2個樣本,并將這2個樣本取部分混合在一起檢測,若檢測到污染物,則再在這2個樣本中任取一個檢測;若未檢測到污染物,則對剩余3個未檢測樣本進行逐個檢測,直到能確定被污染的水源地為止.假設隨機變量分別表示用方案甲、方案乙、方案丙進行檢測所需的檢測次數(shù).
(1)求能取到的最大值和其對應的概率;
(2)求的期望假設每次檢測的費用都相同,請從經濟角度說明方案乙和方案丙哪一個更適合?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據:
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數(shù)據求違章人數(shù)y與月份之間的回歸直線方程+
(2)預測該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);
(3)交警從這5個月內通過該路口的駕駛員中隨機抽查了50人,調查駕駛員不“禮讓斑馬線”行為與駕齡的關系,得到如下2列聯(lián)表:
不禮讓斑馬線 | 禮讓斑馬線 | 合計 | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計 | 30 | 20 | 50 |
能否據此判斷有97.5的把握認為“禮讓斑馬線”行為與駕齡有關?
參考公式及數(shù)據:,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐E﹣ABCD中,底面ABCD為矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F為CE的中點,
(1)求證:AE∥平面BDF;
(2)求證:平面BDF⊥平面ACE;
(3)2AE=EB,在線段AE上找一點P,使得二面角P﹣DB﹣F的余弦值為,求P的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某游戲棋盤上標有第站,棋子開始位于第站,選手拋擲均勻骰子進行游戲,若擲出骰子向上的點數(shù)不大于,棋子向前跳出一站;否則,棋子向前跳出兩站,直到跳到第站或第站時,游戲結束.設游戲過程中棋子出現(xiàn)在第站的概率為.
(1)當游戲開始時,若拋擲均勻骰子次后,求棋子所走站數(shù)之和的分布列與數(shù)學期望;
(2)證明:;
(3)若最終棋子落在第站,則記選手落敗,若最終棋子落在第站,則記選手獲勝.請分析這個游戲是否公平.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學家劉徽在其《海島算經》中給出了著名的望海島問題及二次測望方法:今有望海島,立兩表,齊高三丈,前后相去千步,令后表與前表三相直.從前表卻行一百二十三步,人目著地取望島峰,與表末三合.從后表卻行一百二十七步,人目著地取望島峰,亦與表末三合.問島高及去表各幾何?這一方法領先印度500多年,領先歐洲1300多年.其大意為:測量望海島PQ的高度及海島離岸距離,在海岸邊立兩根等高的標桿(共面,均垂直于地面),使目測點E與P、B共線,目測點F與P、D共線,測出AE、CF、AC即可求出島高和距離(如圖).若,則________;______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com