【題目】記[x]表示不超過x的最大整數(shù),執(zhí)行如圖所示的程序框圖,則輸出S的值為 .
【答案】7
【解析】解:模擬程序框圖的運行過程,如下;
S=0,n=0,
執(zhí)行循環(huán)體,S=0+[ ]=0,
不滿足條件n>6,n=2,S=0+[ ]=1,
不滿足條件n>6,n=4,S=1+[ ]=3,
不滿足條件n>6,n=6,S=3+[ ]=5,
不滿足條件n>6,n=8,S=5+[ ]=7,
滿足條件n>6,退出循環(huán),輸出S的值為7.
所以答案是:7.
【考點精析】關(guān)于本題考查的程序框圖,需要了解程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為一個等腰三角形形狀的空地,腰CA的長為3(百米),底AB的長為4(百米).現(xiàn)決定在空地內(nèi)筑一條筆直的小路EF(寬度不計),將該空地分成一個四邊形和一個三角形,設(shè)分成的四邊形和三角形的周長相等、面積分別為S1和S2 .
(1)若小路一端E為AC的中點,求此時小路的長度;
(2)求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)采取隨機模擬的方法估計某運動員射擊擊中目標(biāo)的概率.先由計算器給出0到9之間取整數(shù)的隨機數(shù),指定0,1,2,3表示沒有擊中目標(biāo),4,5,6,7,8,9表示集中目標(biāo),以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組如下的隨機數(shù): 7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根據(jù)以上數(shù)據(jù)估計該運動員射擊四次至少擊中三次的概率為: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有甲、乙兩個實驗班,為了了解班級成績,采用分層抽樣的方法從甲、乙兩個班學(xué)生中分別抽取8名和6名測試他們的數(shù)學(xué)成績與英語成績(單位:分),用表示(m,n).下面是乙班6名學(xué)生的測試分數(shù):A(138,130),B(140,132),C(140,130),D(134,140),E(142,134),F(xiàn)(134,132),當(dāng)學(xué)生的數(shù)學(xué)、英語成績滿足m≥135,且n≥130時,該學(xué)生定為優(yōu)秀學(xué)生.
(1)已知甲班共有80名學(xué)生,用上述樣本數(shù)據(jù)估計乙班優(yōu)秀生的數(shù)量;
(2)從乙班抽出的上述6名學(xué)生中隨機抽取3名,求至少有兩名優(yōu)秀生的概率;
(3)從乙班抽出的上述6名學(xué)生中隨機抽取2名,其中優(yōu)秀生數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點都在圓上.
(1)求圓的方程;
(2)若圓與直線交于,兩點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足: + +…+ = (n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若bn=anan+1 , Sn為數(shù)列{bn}的前n項和,對于任意的正整數(shù)n,Sn>2λ﹣ 恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1與雙曲線C2有相同的左右焦點F1、F2 , P為橢圓C1與雙曲線C2在第一象限內(nèi)的一個公共點,設(shè)橢圓C1與雙曲線C2的離心率為e1 , e2 , 且 = ,若∠F1PF2= ,則雙曲線C2的漸近線方程為( )
A.x±y=0
B.x± y=0
C.x± y=0
D.x±2y=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義“正對數(shù)”:ln+x= ,現(xiàn)有四個命題: ①若a>0,b>0,則ln+(ab)=bln+a
②若a>0,b>0,則ln+(ab)=ln+a+ln+b
③若a>0,b>0,則 b
④若a>0,b>0,則ln+(a+b)≤ln+a+ln+b+ln2
其中的真命題有: . (寫出所有真命題的編號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com